--- language: - en license: apache-2.0 tags: - code - mathematics datasets: - ajibawa-2023/Code-290k-ShareGPT - m-a-p/Code-Feedback - microsoft/orca-math-word-problems-200k - teknium/openhermes model-index: - name: Code-Mistral-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 64.59 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.29 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.0 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 54.64 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.24 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 68.08 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B name: Open LLM Leaderboard --- **Code-Mistral-7B** This Model is trained on refined version of my dataset [Code-290k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Code-290k-ShareGPT). Besides this it is trained on following datasets: [Code-Feedback](https://huggingface.co/datasets/m-a-p/Code-Feedback) [orca-math-word-problems-200k](https://huggingface.co/datasets/microsoft/orca-math-word-problems-200k) [Openhermes](https://huggingface.co/datasets/teknium/openhermes) The idea was to check how this Model will perform with both Code & Maths datasets. This model is very good with Coding. Maths is still hit & miss but you can test out this model. This Model is trained on massive datasets so the results are very good. I have used ChatML prompt format. Kindly note this is qLoRA version, a rare exception. **GGUF & Exllama** GGUF: [Link](https://huggingface.co/bartowski/Code-Mistral-7B-GGUF) Exllama v2: [Link](https://huggingface.co/bartowski/Code-Mistral-7B-exl2) Special Thanks to [Bartowski](https://huggingface.co/bartowski) for quantizing this model. **Training:** Entire dataset was trained on 4 x A100 80GB. For 3 epoch, training took almost 33 Hours. Axolotl codebase was used for training purpose. Entire data is trained on Mistral. **Example Prompt:** This model uses **ChatML** prompt format. ``` <|im_start|>system You are a helpful AI assistant.<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` You can modify above Prompt as per your requirement. I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development. Thank you for your love & support. **Example Output** **C++** ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/jcmEZSRX7s7-B_ZybWwwN.jpeg) **Error Resolving** ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/iy89IxjiZXAY4Id-ieLg7.jpeg) **Matrices** ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/zFfq9lBA63wQzy0tP3_hd.jpeg) **Machine Learning** ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/Nv8dCpNxRtJGkOuulKzmn.jpeg) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ajibawa-2023__Code-Mistral-7B) | Metric |Value| |---------------------------------|----:| |Avg. |69.97| |AI2 Reasoning Challenge (25-Shot)|64.59| |HellaSwag (10-Shot) |85.29| |MMLU (5-Shot) |65.00| |TruthfulQA (0-shot) |54.64| |Winogrande (5-shot) |82.24| |GSM8k (5-shot) |68.08|