--- library_name: transformers license: apache-2.0 base_model: google/mt5-small tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-emails-gpt-summaries-batchs8-epochs20 results: [] --- # mt5-small-finetuned-emails-gpt-summaries-batchs8-epochs20 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0969 - Rouge1: 0.1523 - Rouge2: 0.0732 - Rougel: 0.1381 - Rougelsum: 0.1512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 20.8315 | 1.0 | 18 | 12.1572 | 0.0110 | 0.0 | 0.0110 | 0.0110 | | 16.2522 | 2.0 | 36 | 9.4668 | 0.0172 | 0.0025 | 0.0172 | 0.0168 | | 13.8556 | 3.0 | 54 | 8.5239 | 0.0149 | 0.0025 | 0.0152 | 0.0146 | | 11.5721 | 4.0 | 72 | 7.3135 | 0.0128 | 0.0013 | 0.0128 | 0.0125 | | 10.2536 | 5.0 | 90 | 7.3664 | 0.0118 | 0.0013 | 0.0120 | 0.0115 | | 8.8152 | 6.0 | 108 | 5.2895 | 0.0288 | 0.0070 | 0.0290 | 0.0286 | | 7.909 | 7.0 | 126 | 3.9341 | 0.0285 | 0.0013 | 0.0284 | 0.0281 | | 6.7655 | 8.0 | 144 | 3.6549 | 0.0427 | 0.0069 | 0.0406 | 0.0394 | | 6.243 | 9.0 | 162 | 3.5561 | 0.0474 | 0.0133 | 0.0437 | 0.0462 | | 5.5584 | 10.0 | 180 | 3.4047 | 0.0823 | 0.0253 | 0.0786 | 0.0763 | | 5.1966 | 11.0 | 198 | 3.3160 | 0.1221 | 0.0484 | 0.1186 | 0.1209 | | 4.9761 | 12.0 | 216 | 3.2536 | 0.1469 | 0.0751 | 0.1364 | 0.1481 | | 4.7006 | 13.0 | 234 | 3.2081 | 0.1353 | 0.0637 | 0.1162 | 0.1318 | | 4.4686 | 14.0 | 252 | 3.1687 | 0.1453 | 0.0707 | 0.1347 | 0.1399 | | 4.3912 | 15.0 | 270 | 3.1480 | 0.1574 | 0.0782 | 0.1449 | 0.1498 | | 4.2511 | 16.0 | 288 | 3.1414 | 0.1541 | 0.0734 | 0.1412 | 0.1509 | | 4.1233 | 17.0 | 306 | 3.1239 | 0.1572 | 0.0734 | 0.1439 | 0.1536 | | 4.0948 | 18.0 | 324 | 3.1061 | 0.1451 | 0.0689 | 0.1316 | 0.1438 | | 4.0434 | 19.0 | 342 | 3.0981 | 0.1517 | 0.0732 | 0.1377 | 0.1507 | | 4.1557 | 20.0 | 360 | 3.0969 | 0.1523 | 0.0732 | 0.1381 | 0.1512 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0