--- license: other base_model: nvidia/segformer-b0-finetuned-ade-512-512 tags: - generated_from_keras_callback model-index: - name: Segformer-MRIseg_model_Mar24 results: [] --- # Segformer-MRIseg_model_Mar24 This model is a fine-tuned version of [nvidia/segformer-b0-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0037 - Validation Loss: 0.0081 - Epoch: 59 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.5861 | 0.0929 | 0 | | 0.0953 | 0.0606 | 1 | | 0.0509 | 0.0350 | 2 | | 0.0308 | 0.0231 | 3 | | 0.0253 | 0.0219 | 4 | | 0.0202 | 0.0179 | 5 | | 0.0162 | 0.0184 | 6 | | 0.0152 | 0.0188 | 7 | | 0.0135 | 0.0157 | 8 | | 0.0119 | 0.0170 | 9 | | 0.0110 | 0.0150 | 10 | | 0.0102 | 0.0157 | 11 | | 0.0097 | 0.0137 | 12 | | 0.0095 | 0.0141 | 13 | | 0.0087 | 0.0118 | 14 | | 0.0079 | 0.0116 | 15 | | 0.0075 | 0.0119 | 16 | | 0.0072 | 0.0109 | 17 | | 0.0069 | 0.0118 | 18 | | 0.0068 | 0.0104 | 19 | | 0.0065 | 0.0108 | 20 | | 0.0064 | 0.0124 | 21 | | 0.0062 | 0.0095 | 22 | | 0.0058 | 0.0111 | 23 | | 0.0058 | 0.0094 | 24 | | 0.0056 | 0.0111 | 25 | | 0.0055 | 0.0125 | 26 | | 0.0057 | 0.0104 | 27 | | 0.0053 | 0.0096 | 28 | | 0.0051 | 0.0105 | 29 | | 0.0050 | 0.0103 | 30 | | 0.0048 | 0.0091 | 31 | | 0.0047 | 0.0097 | 32 | | 0.0044 | 0.0094 | 33 | | 0.0045 | 0.0092 | 34 | | 0.0045 | 0.0093 | 35 | | 0.0047 | 0.0088 | 36 | | 0.0048 | 0.0089 | 37 | | 0.0045 | 0.0108 | 38 | | 0.0043 | 0.0088 | 39 | | 0.0043 | 0.0090 | 40 | | 0.0044 | 0.0106 | 41 | | 0.0053 | 0.0100 | 42 | | 0.0051 | 0.0102 | 43 | | 0.0044 | 0.0097 | 44 | | 0.0039 | 0.0088 | 45 | | 0.0040 | 0.0097 | 46 | | 0.0040 | 0.0089 | 47 | | 0.0037 | 0.0095 | 48 | | 0.0034 | 0.0085 | 49 | | 0.0041 | 0.0082 | 50 | | 0.0054 | 0.0098 | 51 | | 0.0053 | 0.0085 | 52 | | 0.0044 | 0.0086 | 53 | | 0.0040 | 0.0082 | 54 | | 0.0038 | 0.0082 | 55 | | 0.0035 | 0.0092 | 56 | | 0.0034 | 0.0090 | 57 | | 0.0035 | 0.0079 | 58 | | 0.0037 | 0.0081 | 59 | ### Framework versions - Transformers 4.38.1 - TensorFlow 2.15.0 - Datasets 2.18.0 - Tokenizers 0.15.2