--- language: tr license: mit widget: - text: "Mustafa Kemal Atatürk 19 Mayıs 1919'da Samsun'a çıktı." --- # Turkish Named Entity Recognition (NER) Model This model is the fine-tuned model of "dbmdz/bert-base-turkish-cased" using a reviewed version of well known Turkish NER dataset (https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt). # Fine-tuning parameters: ``` task = "ner" model_checkpoint = "dbmdz/bert-base-turkish-cased" batch_size = 8 label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] max_length = 512 learning_rate = 2e-5 num_train_epochs = 3 weight_decay = 0.01 ``` # How to use: ``` model = AutoModelForTokenClassification.from_pretrained("akdeniz27/bert-base-turkish-cased-ner") tokenizer = AutoTokenizer.from_pretrained("akdeniz27/bert-base-turkish-cased-ner") ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first") ner("your text here") ``` Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter. # Reference test results: * accuracy: 0.9933935699477056 * f1: 0.9592969472710453 * precision: 0.9543530277931161 * recall: 0.9642923563325274 Evaluation results with the test sets proposed in ["Küçük, D., Küçük, D., Arıcı, N. 2016. Türkçe Varlık İsmi Tanıma için bir Veri Kümesi ("A Named Entity Recognition Dataset for Turkish"). IEEE Sinyal İşleme, İletişim ve Uygulamaları Kurultayı. Zonguldak, Türkiye."](https://ieeexplore.ieee.org/document/7495744) paper. * Test Set Acc. Prec. Rec. F1-Score * 20010000 0.9946 0.9871 0.9463 0.9662 * 20020000 0.9928 0.9134 0.9206 0.9170 * 20030000 0.9942 0.9814 0.9186 0.9489 * 20040000 0.9943 0.9660 0.9522 0.9590 * 20050000 0.9971 0.9539 0.9932 0.9732 * 20060000 0.9993 0.9942 0.9942 0.9942 * 20070000 0.9970 0.9806 0.9439 0.9619 * 20080000 0.9988 0.9821 0.9649 0.9735 * 20090000 0.9977 0.9891 0.9479 0.9681 * 20100000 0.9961 0.9684 0.9293 0.9485 * Overall 0.9961 0.9720 0.9516 0.9617