--- language: tr widget: - text: "Mustafa Kemal Atatürk 19 Mayıs 1919'da Samsun'a çıktı." --- # Turkish Named Entity Recognition (NER) Model This model is the fine-tuned model of "xlm-roberta-base" (a multilingual version of RoBERTa) using a reviewed version of well known Turkish NER dataset (https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt). # Fine-tuning parameters: ``` task = "ner" model_checkpoint = "xlm-roberta-base" batch_size = 8 label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] max_length = 512 learning_rate = 2e-5 num_train_epochs = 4 weight_decay = 0.01 ``` # How to use: ``` model = AutoModelForTokenClassification.from_pretrained("akdeniz27/xlm-roberta-base-turkish-ner") tokenizer = AutoTokenizer.from_pretrained("akdeniz27/xlm-roberta-base-turkish-ner") ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="none") ner("") ``` Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter. # Reference test results: * accuracy: 0.9919343118732742 * f1: 0.945422814532762 * precision: 0.9366551398931153 * recall: 0.9543561819346573