--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: image_classification_for_fracture results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.85 --- # image_classification_for_fracture This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4783 - Accuracy: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.8 | 2 | 0.6696 | 0.75 | | No log | 2.0 | 5 | 0.6296 | 0.7 | | No log | 2.8 | 7 | 0.5853 | 0.775 | | 0.639 | 4.0 | 10 | 0.5731 | 0.8 | | 0.639 | 4.8 | 12 | 0.5430 | 0.825 | | 0.639 | 6.0 | 15 | 0.5223 | 0.85 | | 0.639 | 6.8 | 17 | 0.5036 | 0.8 | | 0.5453 | 8.0 | 20 | 0.4783 | 0.85 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.1+cpu - Datasets 2.18.0 - Tokenizers 0.15.2