---
base_model: sentence-transformers/all-mpnet-base-v2
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:50
- loss:CosineSimilarityLoss
widget:
- source_sentence: Freepoint Commodity services venture
sentences:
- DUPLI OF 823707 BITUBULK SRL VESSEL
- Freepoint Commodities LLC
- AUGUSTA ENERGY DMCC
- source_sentence: BNG INT private ltd
sentences:
- BGN INT DMCC
- Count Energy PA
- BB Energy Group Holding Ltd
- source_sentence: Act fuel ball venture
sentences:
- ADDAX ENERGY SA
- BITUME INVEST S.A.R.L
- Altis Group International, LLC
- source_sentence: BW gas product ltd
sentences:
- Bulk Trading SA
- BINH SON REFINING AND PETRO LPIINTL
- BW LPG PRODUCT SERVICES LPIINTL
- source_sentence: Altis private limited
sentences:
- E1 Corporation
- Diersch & Schrder GmbH & Co. KG
- Altis Group International, LLC
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.9446733306821109
name: Pearson Cosine
- type: spearman_cosine
value: 0.9249801057480238
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9624404790642681
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.9269933391918109
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9638295828361044
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.9249801057480238
name: Spearman Euclidean
- type: pearson_dot
value: 0.9446733259374165
name: Pearson Dot
- type: spearman_dot
value: 0.9249801057480238
name: Spearman Dot
- type: pearson_max
value: 0.9638295828361044
name: Pearson Max
- type: spearman_max
value: 0.9269933391918109
name: Spearman Max
---
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the train dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- train
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("akshitguptafintek24/exxon-semantic-search")
# Run inference
sentences = [
'Altis private limited',
'Altis Group International, LLC',
'Diersch & Schrder GmbH & Co. KG',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:----------|
| pearson_cosine | 0.9447 |
| **spearman_cosine** | **0.925** |
| pearson_manhattan | 0.9624 |
| spearman_manhattan | 0.927 |
| pearson_euclidean | 0.9638 |
| spearman_euclidean | 0.925 |
| pearson_dot | 0.9447 |
| spearman_dot | 0.925 |
| pearson_max | 0.9638 |
| spearman_max | 0.927 |
## Training Details
### Training Dataset
#### train
* Dataset: train
* Size: 50 training samples
* Columns: Applicant name
, Customer name
, and score
* Approximate statistics based on the first 1000 samples:
| | Applicant name | Customer name | score |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------|
| type | string | string | float |
| details |
Act Commodity GBV
| ACT Commodities Group BV
| 1.0
|
| Act Commodity GBV
| ACT Fuels B.V.
| 0.76
|
| Act fuel ball venture
| ACT Fuels B.V.
| 1.0
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 30
- `warmup_ratio`: 0.1
#### All Hyperparameters