--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased-finetuned-sst-2-english tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-analysis-model-team-28 results: [] --- # finetuning-sentiment-analysis-model-team-28 This model is a fine-tuned version of [distilbert/distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6973 - Accuracy: 0.9114 - F1: 0.9427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.021 | 1.0 | 175 | 0.5527 | 0.8986 | 0.9354 | | 0.0123 | 2.0 | 350 | 0.5993 | 0.9029 | 0.9355 | | 0.0002 | 3.0 | 525 | 0.7007 | 0.9029 | 0.9382 | | 0.0313 | 4.0 | 700 | 0.6765 | 0.9086 | 0.9407 | | 0.023 | 5.0 | 875 | 0.6983 | 0.9086 | 0.9405 | | 0.0057 | 6.0 | 1050 | 0.6973 | 0.9114 | 0.9427 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.15.2