--- pipeline_tag: zero-shot-classification language: - da - no - nb - sv license: mit datasets: - strombergnlp/danfever - KBLab/overlim - MoritzLaurer/multilingual-NLI-26lang-2mil7 model-index: - name: electra-small-nordic-nli-scandi results: [] widget: - example_title: Danish text: Mexicansk bokser advarer Messi - 'Du skal bede til gud, om at jeg ikke finder dig' candidate_labels: sundhed, politik, sport, religion - example_title: Norwegian text: Regjeringen i Russland hevder Norge fører en politikk som vil føre til opptrapping i Arktis og «den endelige ødeleggelsen av russisk-norske relasjoner». candidate_labels: helse, politikk, sport, religion - example_title: Swedish text: Så luras kroppens immunförsvar att bota cancer candidate_labels: hälsa, politik, sport, religion inference: parameters: hypothesis_template: "Dette eksempel handler om {}" --- # ScandiNLI - Natural Language Inference model for Scandinavian Languages This model is a fine-tuned version of [jonfd/electra-small-nordic](https://huggingface.co/jonfd/electra-small-nordic) for Natural Language Inference in Danish, Norwegian Bokmål and Swedish. It has been fine-tuned on a dataset composed of [DanFEVER](https://aclanthology.org/2021.nodalida-main.pdf#page=439) as well as machine translated versions of [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) and [CommitmentBank](https://doi.org/10.18148/sub/2019.v23i2.601) into all three languages, and machine translated versions of [FEVER](https://aclanthology.org/N18-1074/) and [Adversarial NLI](https://aclanthology.org/2020.acl-main.441/) into Swedish. The three languages are sampled equally during training, and they're validated on validation splits of [DanFEVER](https://aclanthology.org/2021.nodalida-main.pdf#page=439) and machine translated versions of [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) for Swedish and Norwegian Bokmål, sampled equally. ## Quick start You can use this model in your scripts as follows: ```python >>> from transformers import pipeline >>> classifier = pipeline( ... "zero-shot-classification", ... model="alexandrainst/electra-small-nordic-nli-scandi", ... ) >>> classifier( ... "Mexicansk bokser advarer Messi - 'Du skal bede til gud, om at jeg ikke finder dig'", ... candidate_labels=['sundhed', 'politik', 'sport', 'religion'], ... hypothesis_template="Dette eksempel handler om {}", ... ) {'sequence': "Mexicansk bokser advarer Messi - 'Du skal bede til gud, om at jeg ikke finder dig'", 'labels': ['religion', 'sport', 'politik', 'sundhed'], 'scores': [0.4504755437374115, 0.20737220346927643, 0.1976872682571411, 0.14446501433849335]} ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 4242 - gradient_accumulation_steps: 1 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9, 0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - max_steps: 50,000