--- language: - da - 'no' - nb - sv license: apache-2.0 datasets: - strombergnlp/danfever - KBLab/overlim - MoritzLaurer/multilingual-NLI-26lang-2mil7 pipeline_tag: zero-shot-classification widget: - example_title: Danish text: Mexicansk bokser advarer Messi - 'Du skal bede til gud, om at jeg ikke finder dig' candidate_labels: sundhed, politik, sport, religion - example_title: Norwegian text: Regjeringen i Russland hevder Norge fører en politikk som vil føre til opptrapping i Arktis og «den endelige ødeleggelsen av russisk-norske relasjoner». candidate_labels: helse, politikk, sport, religion - example_title: Swedish text: Så luras kroppens immunförsvar att bota cancer candidate_labels: hälsa, politik, sport, religion inference: parameters: hypothesis_template: Dette eksempel handler om {} base_model: jonfd/electra-small-nordic --- # ScandiNLI - Natural Language Inference model for Scandinavian Languages This model is a fine-tuned version of [jonfd/electra-small-nordic](https://huggingface.co/jonfd/electra-small-nordic) for Natural Language Inference in Danish, Norwegian Bokmål and Swedish. We have released three models for Scandinavian NLI, of different sizes: - [alexandrainst/scandi-nli-large](https://huggingface.co/alexandrainst/scandi-nli-large) - [alexandrainst/scandi-nli-base](https://huggingface.co/alexandrainst/scandi-nli-base) - alexandrainst/scandi-nli-small (this) A demo of the large model can be found in [this Hugging Face Space](https://huggingface.co/spaces/alexandrainst/zero-shot-classification) - check it out! The performance and model size of each of them can be found in the Performance section below. ## Quick start You can use this model in your scripts as follows: ```python >>> from transformers import pipeline >>> classifier = pipeline( ... "zero-shot-classification", ... model="alexandrainst/scandi-nli-small", ... ) >>> classifier( ... "Mexicansk bokser advarer Messi - 'Du skal bede til gud, om at jeg ikke finder dig'", ... candidate_labels=['sundhed', 'politik', 'sport', 'religion'], ... hypothesis_template="Dette eksempel handler om {}", ... ) {'sequence': "Mexicansk bokser advarer Messi - 'Du skal bede til gud, om at jeg ikke finder dig'", 'labels': ['religion', 'sport', 'politik', 'sundhed'], 'scores': [0.4504755437374115, 0.20737220346927643, 0.1976872682571411, 0.14446501433849335]} ``` ## Performance We evaluate the models in Danish, Swedish and Norwegian Bokmål separately. In all cases, we report Matthew's Correlation Coefficient (MCC), macro-average F1-score as well as accuracy. ### Scandinavian Evaluation The Scandinavian scores are the average of the Danish, Swedish and Norwegian scores, which can be found in the sections below. | **Model** | **MCC** | **Macro-F1** | **Accuracy** | **Number of Parameters** | | :-------- | :------------ | :--------- | :----------- | :----------- | | [`alexandrainst/scandi-nli-large`](https://huggingface.co/alexandrainst/scandi-nli-large) | **73.70%** | **74.44%** | **83.91%** | 354M | | [`MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) | 69.01% | 71.99% | 80.66% | 279M | | [`alexandrainst/scandi-nli-base`](https://huggingface.co/alexandrainst/scandi-nli-base) | 67.42% | 71.54% | 80.09% | 178M | | [`joeddav/xlm-roberta-large-xnli`](https://huggingface.co/joeddav/xlm-roberta-large-xnli) | 64.17% | 70.80% | 77.29% | 560M | | [`MoritzLaurer/mDeBERTa-v3-base-mnli-xnli`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 63.94% | 70.41% | 77.23% | 279M | | [`NbAiLab/nb-bert-base-mnli`](https://huggingface.co/NbAiLab/nb-bert-base-mnli) | 61.71% | 68.36% | 76.08% | 178M | | `alexandrainst/scandi-nli-small` (this) | 56.02% | 65.30% | 73.56% | **22M** | ### Danish Evaluation We use a test split of the [DanFEVER dataset](https://aclanthology.org/2021.nodalida-main.pdf#page=439) to evaluate the Danish performance of the models. The test split is generated using [this gist](https://gist.github.com/saattrupdan/1cb8379232fdec6e943dc84595a85e7c). | **Model** | **MCC** | **Macro-F1** | **Accuracy** | **Number of Parameters** | | :-------- | :------------ | :--------- | :----------- | :----------- | | [`alexandrainst/scandi-nli-large`](https://huggingface.co/alexandrainst/scandi-nli-large) | **73.80%** | **58.41%** | **86.98%** | 354M | | [`MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) | 68.37% | 57.10% | 83.25% | 279M | | [`alexandrainst/scandi-nli-base`](https://huggingface.co/alexandrainst/scandi-nli-base) | 62.44% | 55.00% | 80.42% | 178M | | [`NbAiLab/nb-bert-base-mnli`](https://huggingface.co/NbAiLab/nb-bert-base-mnli) | 56.92% | 53.25% | 76.39% | 178M | | [`MoritzLaurer/mDeBERTa-v3-base-mnli-xnli`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 52.79% | 52.00% | 72.35% | 279M | | [`joeddav/xlm-roberta-large-xnli`](https://huggingface.co/joeddav/xlm-roberta-large-xnli) | 49.18% | 50.31% | 69.73% | 560M | | `alexandrainst/scandi-nli-small` (this) | 47.28% | 48.88% | 73.46% | **22M** | ### Swedish Evaluation We use the test split of the machine translated version of the [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) dataset to evaluate the Swedish performance of the models. We acknowledge that not evaluating on a gold standard dataset is not ideal, but unfortunately we are not aware of any NLI datasets in Swedish. | **Model** | **MCC** | **Macro-F1** | **Accuracy** | **Number of Parameters** | | :-------- | :------------ | :--------- | :----------- | :----------- | | [`alexandrainst/scandi-nli-large`](https://huggingface.co/alexandrainst/scandi-nli-large) | **76.69%** | **84.47%** | **84.38%** | 354M | | [`joeddav/xlm-roberta-large-xnli`](https://huggingface.co/joeddav/xlm-roberta-large-xnli) | 75.35% | 83.42% | 83.55% | 560M | | [`MoritzLaurer/mDeBERTa-v3-base-mnli-xnli`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 73.84% | 82.46% | 82.58% | 279M | | [`MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) | 73.32% | 82.15% | 82.08% | 279M | | [`alexandrainst/scandi-nli-base`](https://huggingface.co/alexandrainst/scandi-nli-base) | 72.29% | 81.37% | 81.51% | 178M | | [`NbAiLab/nb-bert-base-mnli`](https://huggingface.co/NbAiLab/nb-bert-base-mnli) | 64.69% | 76.40% | 76.47% | 178M | | `alexandrainst/scandi-nli-small` (this) | 62.35% | 74.79% | 74.93% | **22M** | ### Norwegian Evaluation We use the test split of the machine translated version of the [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) dataset to evaluate the Norwegian performance of the models. We acknowledge that not evaluating on a gold standard dataset is not ideal, but unfortunately we are not aware of any NLI datasets in Norwegian. | **Model** | **MCC** | **Macro-F1** | **Accuracy** | **Number of Parameters** | | :-------- | :------------ | :--------- | :----------- | :----------- | | [`alexandrainst/scandi-nli-large`](https://huggingface.co/alexandrainst/scandi-nli-large) | **70.61%** | **80.43%** | **80.36%** | 354M | | [`joeddav/xlm-roberta-large-xnli`](https://huggingface.co/joeddav/xlm-roberta-large-xnli) | 67.99% | 78.68% | 78.60% | 560M | | [`alexandrainst/scandi-nli-base`](https://huggingface.co/alexandrainst/scandi-nli-base) | 67.53% | 78.24% | 78.33% | 178M | | [`MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) | 65.33% | 76.73% | 76.65% | 279M | | [`MoritzLaurer/mDeBERTa-v3-base-mnli-xnli`](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) | 65.18% | 76.76% | 76.77% | 279M | | [`NbAiLab/nb-bert-base-mnli`](https://huggingface.co/NbAiLab/nb-bert-base-mnli) | 63.51% | 75.42% | 75.39% | 178M | | `alexandrainst/scandi-nli-small` (this) | 58.42% | 72.22% | 72.30% | **22M** | ## Training procedure It has been fine-tuned on a dataset composed of [DanFEVER](https://aclanthology.org/2021.nodalida-main.pdf#page=439) as well as machine translated versions of [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) and [CommitmentBank](https://doi.org/10.18148/sub/2019.v23i2.601) into all three languages, and machine translated versions of [FEVER](https://aclanthology.org/N18-1074/) and [Adversarial NLI](https://aclanthology.org/2020.acl-main.441/) into Swedish. The training split of DanFEVER is generated using [this gist](https://gist.github.com/saattrupdan/1cb8379232fdec6e943dc84595a85e7c). The three languages are sampled equally during training, and they're validated on validation splits of [DanFEVER](https://aclanthology.org/2021.nodalida-main.pdf#page=439) and machine translated versions of [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) for Swedish and Norwegian Bokmål, sampled equally. Check out the [Github repository](https://github.com/alexandrainst/ScandiNLI) for the code used to train the ScandiNLI models, and the full training logs can be found in [this Weights and Biases report](https://wandb.ai/saattrupdan/huggingface/reports/ScandiNLI--VmlldzozMDQyOTk1?accessToken=r9crgxqvvigy2hatdjeobzwipz7f3id5vqg8ooksljhfw6wl0hv1b05asypsfj9v). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 4242 - gradient_accumulation_steps: 1 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9, 0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - max_steps: 50,000