--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - alexstokes/masri_audio_transcription metrics: - wer model-index: - name: Whisper Small - Egyptian Arabic results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Egyptian Arabic Speech Recognition type: alexstokes/masri_audio_transcription args: 'split: train' metrics: - name: Wer type: wer value: 41.667657904127516 --- # Whisper Small - Egyptian Arabic This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Egyptian Arabic Speech Recognition dataset. It achieves the following results on the evaluation set: - Loss: 0.9560 - Wer: 41.6677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0518 | 7.6336 | 1000 | 0.7113 | 42.9166 | | 0.004 | 15.2672 | 2000 | 0.8712 | 41.2157 | | 0.001 | 22.9008 | 3000 | 0.9327 | 42.0245 | | 0.0006 | 30.5344 | 4000 | 0.9560 | 41.6677 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1.post303 - Datasets 3.1.0 - Tokenizers 0.20.3