--- language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_1 metrics: - wer model-index: - name: Whisper Small Tr - CV 43h large batch results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.1 type: mozilla-foundation/common_voice_16_1 config: tr split: None args: 'config: tr, split: test' metrics: - name: Wer type: wer value: 21.060292928385298 --- # Whisper Small Tr - CV 43h large batch This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set: - Loss: 0.2890 - Wer: 21.0603 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.192 | 0.73 | 500 | 0.2638 | 22.1026 | | 0.1238 | 1.46 | 1000 | 0.2492 | 21.2921 | | 0.0663 | 2.19 | 1500 | 0.2483 | 20.7799 | | 0.0656 | 2.92 | 2000 | 0.2445 | 20.3073 | | 0.0391 | 3.65 | 2500 | 0.2575 | 21.1466 | | 0.0203 | 4.38 | 3000 | 0.2744 | 20.9956 | | 0.0125 | 5.11 | 3500 | 0.2841 | 20.9597 | | 0.0096 | 5.84 | 4000 | 0.2890 | 21.0603 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2