--- language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_1 metrics: - wer model-index: - name: Whisper Small Tr - CV 43h - Linear Decay results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.1 type: mozilla-foundation/common_voice_16_1 config: tr split: None args: 'config: tr, split: test' metrics: - name: Wer type: wer value: 21.631772845718395 --- # Whisper Small Tr - CV 43h - Linear Decay This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set: - Loss: 0.2554 - Wer: 21.6318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4000 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2413 | 0.37 | 500 | 0.2845 | 23.9500 | | 0.2005 | 0.73 | 1000 | 0.2615 | 22.3219 | | 0.1583 | 1.1 | 1500 | 0.2493 | 21.5365 | | 0.1513 | 1.46 | 2000 | 0.2485 | 21.5455 | | 0.1502 | 1.83 | 2500 | 0.2407 | 21.0639 | | 0.0959 | 2.19 | 3000 | 0.2485 | 21.1987 | | 0.1074 | 2.56 | 3500 | 0.2539 | 21.8762 | | 0.105 | 2.92 | 4000 | 0.2554 | 21.6318 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2