--- language: en tags: - generated_from_trainer datasets: - allenai/mslr2022 base_model: allenai/led-base-16384 model-index: - name: baseline results: [] --- # Overview This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the [MS^2](https://github.com/allenai/mslr-shared-task#ms2-dataset) dataset. The model received as input the background section and the titles and abstracts of up to 25 included studies for each example, concatenated by the `""` token. Global attention is applied to the special start token `""` and each of the document separator tokens `""`. The model slightly outperforms the reported results in the original paper: [MS2: Multi-Document Summarization of Medical Studies](https://arxiv.org/abs/2104.06486). See the [MS2 leaderboard](https://leaderboard.allenai.org/mslr-ms2/submissions/public) for results on the blind test set. It achieves the following results on the evaluation set: - Loss: 3.7602 - Rouge1 Fmeasure Mean: 28.5338 - Rouge2 Fmeasure Mean: 9.5060 - RougeL Fmeasure Mean: 20.9321 - RougeLsum Fmeasure Mean: 24.0998 - Bertscore Hashcode: microsoft/deberta-xlarge-mnli_L40_no-idf_version=0.3.11(hug_trans=4.21.0.dev0)-rescaled_fast-tokenizer - Bertscore F1 Mean: 22.7619 - Seed: 42 - Model Name Or Path: allenai/led-base-16384 - Doc Sep Token: `""` ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.10.0 - Datasets 2.4.0 - Tokenizers 0.12.1