---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-7B
tags:
- generated_from_trainer
model-index:
- name: ckpts
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.5.2`
```yaml
base_model: Qwen/Qwen2.5-7B
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
strict: false
chat_template: chatml
datasets:
- path: allenai/tulu-3-sft-mixture
type: chat_template
split: train
field_messages: messages
dataset_prepared_path: last_run_prepared
#val_set_size: 0.02
output_dir: ./ckpts
sequence_len: 8192
#sample_packing: true
pad_to_sequence_len: true
wandb_project: qwen-2.5-7b-sft
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 8
num_epochs: 1
optimizer: paged_ademamix_8bit
lr_scheduler: cosine
learning_rate: 3.5e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
deepspeed: deepspeed_configs/zero3_bf16.json
warmup_steps: 370
#evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 2
debug:
weight_decay: 0.0
```
# ckpts
This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3.5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Use paged_ademamix_8bit and the args are:
No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 370
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3