--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-7B tags: - generated_from_trainer model-index: - name: ckpts results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.2` ```yaml base_model: Qwen/Qwen2.5-7B plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: true strict: false chat_template: chatml datasets: - path: allenai/tulu-3-sft-mixture type: chat_template split: train field_messages: messages dataset_prepared_path: last_run_prepared #val_set_size: 0.02 output_dir: ./ckpts sequence_len: 8192 #sample_packing: true pad_to_sequence_len: true wandb_project: qwen-2.5-7b-sft wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 8 num_epochs: 1 optimizer: paged_ademamix_8bit lr_scheduler: cosine learning_rate: 3.5e-6 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true deepspeed: deepspeed_configs/zero3_bf16.json warmup_steps: 370 #evals_per_epoch: 4 eval_table_size: saves_per_epoch: 2 debug: weight_decay: 0.0 ```

# ckpts This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Use paged_ademamix_8bit and the args are: No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 370 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3