--- language: - zh license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Small zh-HK - Alvin results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 zh-HK type: mozilla-foundation/common_voice_11_0 config: zh-HK split: test args: zh-HK metrics: - name: Cer type: cer value: 11.760 --- # Whisper Small zh-HK - Alvin This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data For training, three datasets were used: - Common Voice 11 Canto Train Set - CantoMap: Winterstein, Grégoire, Tang, Carmen and Lai, Regine (2020) "CantoMap: a Hong Kong Cantonese MapTask Corpus", in Proceedings of The 12th Language Resources and Evaluation Conference, Marseille: European Language Resources Association, p. 2899-2906. - Cantonse-ASR: Yu, Tiezheng, Frieske, Rita, Xu, Peng, Cahyawijaya, Samuel, Yiu, Cheuk Tung, Lovenia, Holy, Dai, Wenliang, Barezi, Elham, Chen, Qifeng, Ma, Xiaojuan, Shi, Bertram, Fung, Pascale (2022) "Automatic Speech Recognition Datasets in Cantonese: A Survey and New Dataset", 2022. Link: https://arxiv.org/pdf/2201.02419.pdf ## Training procedure ## Training Hyperparameters - learning_rate: 1e-5 - train_batch_size: 16 (on 2 GPUs) - eval_batch_size: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 16x2x2=64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ## Training Results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1106 | 0.66 | 1000 | 0.3294 | 14.638 | | 0.0546 | 1.33 | 2000 | 0.2887 | 12.119 | | 0.0293 | 2.01 | 3000 | 0.2727 | 11.646 | | 0.0214 | 2.66 | 4000 | 0.2741 | 11.760 | | xx | xx | 5000 | xx | xx | ### Framework versions