--- language: es license: cc-by-4.0 library_name: span-marker tags: - span-marker - token-classification - ner - named-entity-recognition - generated_from_span_marker_trainer datasets: - conll2002 metrics: - precision - recall - f1 widget: - text: George Washington fue a Washington. pipeline_tag: token-classification base_model: xlm-roberta-large model-index: - name: SpanMarker with xlm-roberta-large on conll2002 results: - task: type: token-classification name: Named Entity Recognition dataset: name: conll2002 type: unknown split: eval metrics: - type: f1 value: 0.8911398300151355 name: F1 - type: precision value: 0.8981459751232105 name: Precision - type: recall value: 0.8842421441774492 name: Recall --- # SpanMarker with xlm-roberta-large on conll2002 This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition. This SpanMarker model uses [xlm-roberta-large](https://huggingface.co/models/xlm-roberta-large) as the underlying encoder. ## Model Details ### Model Description - **Model Type:** SpanMarker - **Encoder:** [xlm-roberta-large](https://huggingface.co/models/xlm-roberta-large) - **Maximum Sequence Length:** 256 tokens - **Maximum Entity Length:** 8 words - **Training Dataset:** [conll2002](https://huggingface.co/datasets/conll2002) - **Language:** es - **License:** cc-by-4.0 ### Model Sources - **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER) - **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf) ### Model Labels | Label | Examples | |:------|:------------------------------------------------------------------| | LOC | "Melbourne", "Australia", "Victoria" | | MISC | "CrimeNet", "Ciudad", "Ley" | | ORG | "Commonwealth", "Tribunal Supremo", "EFE" | | PER | "Abogado General del Estado", "Daryl Williams", "Abogado General" | ## Uses ### Direct Use for Inference ```python from span_marker import SpanMarkerModel # Download from the 🤗 Hub model = SpanMarkerModel.from_pretrained("alvarobartt/span-marker-xlm-roberta-large-conll-2002-es") # Run inference entities = model.predict("George Washington fue a Washington.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:----------------------|:----|:--------|:-----| | Sentence length | 1 | 31.8052 | 1238 | | Entities per sentence | 0 | 2.2586 | 160 | ### Training Hyperparameters - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training Results | Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy | |:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:| | 0.0587 | 50 | 0.4612 | 0.0280 | 0.0007 | 0.0014 | 0.8576 | | 0.1174 | 100 | 0.0512 | 0.5 | 0.0002 | 0.0005 | 0.8609 | | 0.1761 | 150 | 0.0254 | 0.7622 | 0.5494 | 0.6386 | 0.9278 | | 0.2347 | 200 | 0.0177 | 0.7840 | 0.7135 | 0.7471 | 0.9483 | | 0.2934 | 250 | 0.0153 | 0.8072 | 0.7944 | 0.8007 | 0.9662 | | 0.3521 | 300 | 0.0175 | 0.8439 | 0.7544 | 0.7966 | 0.9611 | | 0.4108 | 350 | 0.0103 | 0.8828 | 0.8108 | 0.8452 | 0.9687 | | 0.4695 | 400 | 0.0105 | 0.8674 | 0.8433 | 0.8552 | 0.9724 | | 0.5282 | 450 | 0.0098 | 0.8651 | 0.8477 | 0.8563 | 0.9745 | | 0.5869 | 500 | 0.0092 | 0.8634 | 0.8306 | 0.8467 | 0.9736 | | 0.6455 | 550 | 0.0106 | 0.8556 | 0.8581 | 0.8568 | 0.9758 | | 0.7042 | 600 | 0.0096 | 0.8712 | 0.8521 | 0.8616 | 0.9733 | | 0.7629 | 650 | 0.0090 | 0.8791 | 0.8420 | 0.8601 | 0.9740 | | 0.8216 | 700 | 0.0082 | 0.8883 | 0.8799 | 0.8840 | 0.9769 | | 0.8803 | 750 | 0.0081 | 0.8877 | 0.8604 | 0.8739 | 0.9763 | | 0.9390 | 800 | 0.0087 | 0.8785 | 0.8738 | 0.8762 | 0.9763 | | 0.9977 | 850 | 0.0084 | 0.8777 | 0.8653 | 0.8714 | 0.9767 | | 1.0563 | 900 | 0.0081 | 0.8894 | 0.8713 | 0.8803 | 0.9767 | | 1.1150 | 950 | 0.0078 | 0.8944 | 0.8708 | 0.8825 | 0.9768 | | 1.1737 | 1000 | 0.0079 | 0.8973 | 0.8722 | 0.8846 | 0.9776 | | 1.2324 | 1050 | 0.0080 | 0.8792 | 0.8780 | 0.8786 | 0.9783 | | 1.2911 | 1100 | 0.0082 | 0.8821 | 0.8574 | 0.8696 | 0.9767 | | 1.3498 | 1150 | 0.0075 | 0.8928 | 0.8697 | 0.8811 | 0.9774 | | 1.4085 | 1200 | 0.0076 | 0.8919 | 0.8803 | 0.8860 | 0.9792 | | 1.4671 | 1250 | 0.0078 | 0.8846 | 0.8695 | 0.8770 | 0.9781 | | 1.5258 | 1300 | 0.0074 | 0.8944 | 0.8845 | 0.8894 | 0.9792 | | 1.5845 | 1350 | 0.0076 | 0.8922 | 0.8856 | 0.8889 | 0.9796 | | 1.6432 | 1400 | 0.0072 | 0.9004 | 0.8799 | 0.8900 | 0.9790 | | 1.7019 | 1450 | 0.0076 | 0.8944 | 0.8889 | 0.8916 | 0.9800 | | 1.7606 | 1500 | 0.0074 | 0.8962 | 0.8861 | 0.8911 | 0.9800 | | 1.8192 | 1550 | 0.0072 | 0.8988 | 0.8886 | 0.8937 | 0.9809 | | 1.8779 | 1600 | 0.0074 | 0.8962 | 0.8833 | 0.8897 | 0.9797 | | 1.9366 | 1650 | 0.0071 | 0.8976 | 0.8849 | 0.8912 | 0.9799 | | 1.9953 | 1700 | 0.0071 | 0.8981 | 0.8842 | 0.8911 | 0.9799 | ### Framework Versions - Python: 3.10.12 - SpanMarker: 1.3.1.dev - Transformers: 4.33.2 - PyTorch: 2.0.1+cu118 - Datasets: 2.14.5 - Tokenizers: 0.13.3 ## Citation ### BibTeX ``` @software{Aarsen_SpanMarker, author = {Aarsen, Tom}, license = {Apache-2.0}, title = {{SpanMarker for Named Entity Recognition}}, url = {https://github.com/tomaarsen/SpanMarkerNER} } ```