--- library_name: transformers license: apache-2.0 base_model: microsoft/beit-base-patch16-224-pt22k-ft22k tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: beit-base-patch16-224-pt22k-ft22k-finetuned-barkley results: [] --- # beit-base-patch16-224-pt22k-ft22k-finetuned-barkley This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0079 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 - Top1 Accuracy: 1.0 - Error Rate: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Top1 Accuracy | Error Rate | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:| | 1.5547 | 1.0 | 38 | 1.4018 | 0.5683 | 0.4539 | 0.4240 | 0.4728 | 0.4539 | 0.5272 | | 1.1732 | 2.0 | 76 | 0.9193 | 0.8095 | 0.7961 | 0.7985 | 0.8077 | 0.7961 | 0.1923 | | 0.6764 | 3.0 | 114 | 0.3644 | 0.9488 | 0.9474 | 0.9470 | 0.9483 | 0.9474 | 0.0517 | | 0.2566 | 4.0 | 152 | 0.0871 | 0.9937 | 0.9934 | 0.9934 | 0.9944 | 0.9934 | 0.0056 | | 0.1014 | 5.0 | 190 | 0.0533 | 0.9809 | 0.9803 | 0.9802 | 0.9811 | 0.9803 | 0.0189 | | 0.0538 | 6.0 | 228 | 0.0208 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | | 0.0304 | 7.0 | 266 | 0.0079 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | | 0.0571 | 8.0 | 304 | 0.0088 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | | 0.0608 | 9.0 | 342 | 0.0226 | 0.9936 | 0.9934 | 0.9934 | 0.9933 | 0.9934 | 0.0067 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1