--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9314097279472382 - name: Recall type: recall value: 0.9506900033658701 - name: F1 type: f1 value: 0.94095111185142 - name: Accuracy type: accuracy value: 0.9862541943839407 --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0622 - Precision: 0.9314 - Recall: 0.9507 - F1: 0.9410 - Accuracy: 0.9863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0821 | 1.0 | 1756 | 0.0639 | 0.9108 | 0.9371 | 0.9238 | 0.9834 | | 0.0366 | 2.0 | 3512 | 0.0585 | 0.9310 | 0.9497 | 0.9403 | 0.9857 | | 0.019 | 3.0 | 5268 | 0.0622 | 0.9314 | 0.9507 | 0.9410 | 0.9863 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1