import torch from transformers import AutoConfig, AutoModel from .configuration_davit import DaViTConfig from .modeling_davit import DaViTModel # Register the configuration and model AutoConfig.register("davit", DaViTConfig) AutoModel.register(DaViTConfig, DaViTModel) # Step 1: Create a configuration object config = DaViTConfig() # Step 2: Create a model object model = AutoModel.from_config(config) # Step 3: Run a forward pass # Generate a random sample input tensor with shape (batch_size, channels, height, width) batch_size = 2 channels = 3 height = 224 width = 224 sample_input = torch.randn(batch_size, channels, height, width) # Pass the sample input through the model output = model(sample_input) # Print the output shape print(f"Output shape: {output.shape}") # Expected output shape: (batch_size, projection_dim)