--- license: apache-2.0 --- ## FDViT: Improve the Hierarchical Architecture of Vision Transformer (ICCV 2023) **Yixing Xu, Chao Li, Dong Li, Xiao Sheng, Fan Jiang, Lu Tian, Ashish Sirasao** | [Paper](https://openaccess.thecvf.com/content/ICCV2023/papers/Xu_FDViT_Improve_the_Hierarchical_Architecture_of_Vision_Transformer_ICCV_2023_paper.pdf) Advanced Micro Devices, Inc. --- ## Dependancies ```bash torch == 1.13.1 torchvision == 0.14.1 timm == 0.6.12 einops == 0.6.1 ``` ## Model performance The image classification results of FDViT models on ImageNet dataset are shown in the following table. |Model|Parameters (M)|FLOPs(G)|Top-1 Accuracy (%)| |-|-|-|-| |FDViT-Ti|4.6|0.6|73.74| |FDViT-S|21.6|2.8|81.45| |FDViT-B|68.1|11.9|82.39| ## Model Usage ```bash from transformers import AutoModelForImageClassification import torch model = AutoModelForImageClassification.from_pretrained("FDViT_ti", trust_remote_code=True) model.eval() inp = torch.ones(1,3,224,224) out = model(inp) ``` ## Citation ``` @inproceedings{xu2023fdvit, title={FDViT: Improve the Hierarchical Architecture of Vision Transformer}, author={Xu, Yixing and Li, Chao and Li, Dong and Sheng, Xiao and Jiang, Fan and Tian, Lu and Sirasao, Ashish}, booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, pages={5950--5960}, year={2023} } ```