--- language: - en library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - dataset_size:1M - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Language:** en ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("ammumadhu/Indic_Bert-8-layers") # Run inference sentences = [ 'Men are outdoors.', 'A man is outside.', 'A Little girl is enjoying cake outside.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-dev` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.6061 | | **spearman_cosine** | **0.6316** | | pearson_manhattan | 0.4868 | | spearman_manhattan | 0.5132 | | pearson_euclidean | 0.506 | | spearman_euclidean | 0.5306 | | pearson_dot | 0.2198 | | spearman_dot | 0.2098 | | pearson_max | 0.6061 | | spearman_max | 0.6316 | #### Knowledge Distillation * Evaluated with [MSEEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator) | Metric | Value | |:-----------------|:------------| | **negative_mse** | **-3.0273** | #### Semantic Similarity * Dataset: `sts-test` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.7909 | | **spearman_cosine** | **0.7965** | | pearson_manhattan | 0.776 | | spearman_manhattan | 0.773 | | pearson_euclidean | 0.7764 | | spearman_euclidean | 0.7736 | | pearson_dot | 0.6959 | | spearman_dot | 0.6843 | | pearson_max | 0.7909 | | spearman_max | 0.7965 | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 1,147,385 training samples * Columns: sentence and label * Approximate statistics based on the first 1000 samples: | | sentence | label | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------| | type | string | list | | details | | | * Samples: | sentence | label | |:---------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------| | A person on a horse jumps over a broken down airplane. | [-0.0009042086312547326, 0.02319158799946308, 0.016657305881381035, -0.004571350757032633, -0.008184989914298058, ...] | | Children smiling and waving at camera | [-0.020024249330163002, -0.0005705401999875903, 0.025419672951102257, -0.014105383306741714, 0.009407470934092999, ...] | | A boy is jumping on skateboard in the middle of a red bridge. | [-0.01713346689939499, -2.3264645278686658e-05, -0.0005397812929004431, 0.002506087301298976, 0.027286207303404808, ...] | * Loss: [MSELoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) ### Evaluation Dataset #### sentence-transformers/wikipedia-en-sentences * Dataset: [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) at [4a0972d](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences/tree/4a0972dcb781b5b5d27799798f032606421dd422) * Size: 10,000 evaluation samples * Columns: sentence and label * Approximate statistics based on the first 1000 samples: | | sentence | label | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------| | type | string | list | | details | | | * Samples: | sentence | label | |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------| | Two women are embracing while holding to go packages. | [-0.000599742284975946, 0.0042074089869856834, 0.0013686479069292545, -0.0009170330595225096, -0.010106148198246956, ...] | | Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. | [0.003711540251970291, -0.005768307950347662, -0.03475787863135338, 0.010626137256622314, -0.0023863380774855614, ...] | | A man selling donuts to a customer during a world exhibition event held in the city of Angeles | [-0.014246350154280663, 0.015385480597615242, 0.0016394935082644224, -0.013386472128331661, -0.015061145648360252, ...] | * Loss: [MSELoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `learning_rate`: 0.0001 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `load_best_model_at_end`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 0.0001 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | negative_mse | sts-dev_spearman_cosine | sts-test_spearman_cosine | |:------:|:----:|:-------------:|:------------:|:-----------------------:|:------------------------:| | 0 | 0 | - | -3.0273 | 0.6316 | - | | 0.2231 | 1000 | 0.0015 | - | - | - | | 0.4462 | 2000 | 0.0001 | - | - | - | | 0.6693 | 3000 | 0.0001 | - | - | - | | 0.8925 | 4000 | 0.0001 | - | - | - | | 1.0 | 4482 | - | - | - | 0.7965 | ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.0.0 - Transformers: 4.41.2 - PyTorch: 2.1.0 - Accelerate: 0.30.1 - Datasets: 2.19.2 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MSELoss ```bibtex @inproceedings{reimers-2020-multilingual-sentence-bert, title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2020", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2004.09813", } ```