--- language: - en library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - dataset_size:10K - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) - **Language:** en ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("ammumadhu/indic-bert-nli-matryoshka") # Run inference sentences = [ 'Then he ran.', 'He then started to run.', 'A man plays the flute.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-dev-768` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8609 | | **spearman_cosine** | **0.8663** | | pearson_manhattan | 0.8587 | | spearman_manhattan | 0.8612 | | pearson_euclidean | 0.8585 | | spearman_euclidean | 0.8611 | | pearson_dot | 0.8259 | | spearman_dot | 0.826 | | pearson_max | 0.8609 | | spearman_max | 0.8663 | #### Semantic Similarity * Dataset: `sts-dev-512` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8594 | | **spearman_cosine** | **0.8649** | | pearson_manhattan | 0.8574 | | spearman_manhattan | 0.8599 | | pearson_euclidean | 0.8575 | | spearman_euclidean | 0.8601 | | pearson_dot | 0.8223 | | spearman_dot | 0.8227 | | pearson_max | 0.8594 | | spearman_max | 0.8649 | #### Semantic Similarity * Dataset: `sts-dev-256` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8506 | | **spearman_cosine** | **0.8576** | | pearson_manhattan | 0.8528 | | spearman_manhattan | 0.8553 | | pearson_euclidean | 0.8527 | | spearman_euclidean | 0.8551 | | pearson_dot | 0.7944 | | spearman_dot | 0.7964 | | pearson_max | 0.8528 | | spearman_max | 0.8576 | #### Semantic Similarity * Dataset: `sts-dev-128` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8411 | | **spearman_cosine** | **0.8505** | | pearson_manhattan | 0.8462 | | spearman_manhattan | 0.849 | | pearson_euclidean | 0.8458 | | spearman_euclidean | 0.8487 | | pearson_dot | 0.7756 | | spearman_dot | 0.7756 | | pearson_max | 0.8462 | | spearman_max | 0.8505 | #### Semantic Similarity * Dataset: `sts-dev-64` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8177 | | **spearman_cosine** | **0.8308** | | pearson_manhattan | 0.8292 | | spearman_manhattan | 0.832 | | pearson_euclidean | 0.8311 | | spearman_euclidean | 0.8334 | | pearson_dot | 0.7153 | | spearman_dot | 0.7181 | | pearson_max | 0.8311 | | spearman_max | 0.8334 | #### Semantic Similarity * Dataset: `sts-test-768` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8492 | | **spearman_cosine** | **0.8569** | | pearson_manhattan | 0.8572 | | spearman_manhattan | 0.8566 | | pearson_euclidean | 0.8569 | | spearman_euclidean | 0.8567 | | pearson_dot | 0.7969 | | spearman_dot | 0.7879 | | pearson_max | 0.8572 | | spearman_max | 0.8569 | #### Semantic Similarity * Dataset: `sts-test-512` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8507 | | **spearman_cosine** | **0.8575** | | pearson_manhattan | 0.8564 | | spearman_manhattan | 0.856 | | pearson_euclidean | 0.8562 | | spearman_euclidean | 0.8561 | | pearson_dot | 0.7973 | | spearman_dot | 0.7873 | | pearson_max | 0.8564 | | spearman_max | 0.8575 | #### Semantic Similarity * Dataset: `sts-test-256` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8467 | | **spearman_cosine** | **0.8523** | | pearson_manhattan | 0.8516 | | spearman_manhattan | 0.8516 | | pearson_euclidean | 0.8506 | | spearman_euclidean | 0.8504 | | pearson_dot | 0.7757 | | spearman_dot | 0.7687 | | pearson_max | 0.8516 | | spearman_max | 0.8523 | #### Semantic Similarity * Dataset: `sts-test-128` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8377 | | **spearman_cosine** | **0.8472** | | pearson_manhattan | 0.8466 | | spearman_manhattan | 0.8488 | | pearson_euclidean | 0.8456 | | spearman_euclidean | 0.8472 | | pearson_dot | 0.7503 | | spearman_dot | 0.7416 | | pearson_max | 0.8466 | | spearman_max | 0.8488 | #### Semantic Similarity * Dataset: `sts-test-64` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8174 | | **spearman_cosine** | **0.8316** | | pearson_manhattan | 0.832 | | spearman_manhattan | 0.8347 | | pearson_euclidean | 0.8335 | | spearman_euclidean | 0.8351 | | pearson_dot | 0.6935 | | spearman_dot | 0.6844 | | pearson_max | 0.8335 | | spearman_max | 0.8351 | ## Training Details ### Training Dataset #### sentence-transformers/all-nli * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab) * Size: 10,000 training samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:----------------------------------------------------------------------------------------------------------|:--------------------------------------------------|:-------------------------------------------------------| | Side view of a female triathlete during the run. | A woman runs | A man sits | | Confused person standing in the middle of the trolley tracks trying to figure out the signs. | A person is on the tracks. | A man sits in an airplane. | | A woman in a black shirt, jean shorts and white tennis shoes is bowling. | A woman is bowling in casual clothes | A woman bowling wins an outfit of clothes | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Evaluation Dataset #### sentence-transformers/all-nli * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab) * Size: 6,584 evaluation samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------| | Two women are embracing while holding to go packages. | Two woman are holding packages. | The men are fighting outside a deli. | | Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. | Two kids in numbered jerseys wash their hands. | Two kids in jackets walk to school. | | A man selling donuts to a customer during a world exhibition event held in the city of Angeles | A man selling donuts to a customer. | A woman drinks her coffee in a small cafe. | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine | |:------:|:----:|:-------------:|:------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:| | 0.3797 | 30 | 7.9432 | 4.2806 | 0.8509 | 0.8570 | 0.8633 | 0.8311 | 0.8644 | - | - | - | - | - | | 0.7595 | 60 | 6.1701 | 3.9498 | 0.8505 | 0.8576 | 0.8649 | 0.8308 | 0.8663 | - | - | - | - | - | | 1.0 | 79 | - | - | - | - | - | - | - | 0.8472 | 0.8523 | 0.8575 | 0.8316 | 0.8569 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.0 - Transformers: 4.41.1 - PyTorch: 2.3.0+cu121 - Accelerate: 0.30.1 - Datasets: 2.19.2 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```