--- license: mit base_model: indolem/indobert-base-uncased tags: - generated_from_trainer datasets: - indonlu metrics: - accuracy model-index: - name: indobert-base-uncased-finetuned-indonlu-smsa results: - task: name: Text Classification type: text-classification dataset: name: indonlu type: indonlu config: smsa split: validation args: smsa metrics: - name: Accuracy type: accuracy value: 0.9214285714285714 --- # indobert-base-uncased-finetuned-indonlu-smsa This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the indonlu dataset. It achieves the following results on the evaluation set: - Loss: 0.2232 - Accuracy: 0.9214 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 344 | 0.6858 | 0.7063 | | 0.8162 | 2.0 | 688 | 0.3510 | 0.8611 | | 0.3579 | 3.0 | 1032 | 0.2232 | 0.9214 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1