--- license: apache-2.0 base_model: dslim/distilbert-NER tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-cased results: [] --- # bert-base-cased This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0367 - Precision: 0.9569 - Recall: 0.9677 - F1: 0.9623 - Accuracy: 0.9915 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0315 | 1.0 | 1500 | 0.0367 | 0.9569 | 0.9677 | 0.9623 | 0.9915 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1