--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:3503 - loss:MultipleNegativesRankingLoss base_model: BAAI/bge-base-en-v1.5 widget: - source_sentence: '###Question###:Factorising into a Double Bracket-Factorise a quadratic expression in the form x² + bx - c-If \( m^{2}+5 m-14 \equiv(m+a)(m+b) \) then \( a \times b= \) ###Correct Answer###:\( -14 \) ###Misconcepted Incorrect answer###:\( 5 \)' sentences: - Does not know that units of volume are usually cubed - Believes the coefficent of x in an expanded quadratic comes from multiplying the two numbers in the brackets - Does not copy a given method accurately - source_sentence: '###Question###:Rounding to the Nearest Whole (10, 100, etc)-Round non-integers to the nearest 10-What is \( \mathbf{8 6 9 8 . 9} \) rounded to the nearest ten? ###Correct Answer###:\( 8700 \) ###Misconcepted Incorrect answer###:\( 8699 \)' sentences: - Rounds to the wrong degree of accuracy (rounds too much) - 'Believes division is commutative ' - Believes that a number divided by itself equals 0 - source_sentence: '###Question###:Simultaneous Equations-Solve linear simultaneous equations requiring a scaling of both expressions-If five cups of tea and two cups of coffee cost \( £ 3.70 \), and two cups of tea and five cups of coffee cost \( £ 4.00 \), what is the cost of a cup of tea and a cup of coffee? ###Correct Answer###:Tea \( =50 \mathrm{p} \) coffee \( =60 p \) ###Misconcepted Incorrect answer###:\( \begin{array}{l}\text { Tea }=0.5 \\ \text { coffee }=0.6\end{array} \)' sentences: - Misinterprets the meaning of angles on a straight line angle fact - Does not include units in answer. - Believes midpoint calculation is just half of the difference - source_sentence: '###Question###:Quadratic Sequences-Find the nth term rule for ascending quadratic sequences in the form ax² + bx + c-\( 6,14,28,48,74, \ldots \) When calculating the nth-term rule of this sequence, what should replace the triangle? nth-term rule: \( 3 n^{2} \)\( \color{red}\triangle \) \(n\) \( \color{purple}\square \) ###Correct Answer###:\( -1 \) (or just a - sign) ###Misconcepted Incorrect answer###:\[ +1 \] (or just a + sign)' sentences: - 'When finding the differences between terms in a sequence, believes they can do so from right to left ' - When solving an equation forgets to eliminate the coefficient in front of the variable in the last step - Believes parallelogram is the term used to describe two lines at right angles - source_sentence: '###Question###:Written Multiplication-Multiply 2 digit integers by 2 digit integers using long multiplication-Which working out is correct for $72 \times 36$? ###Correct Answer###:![ Long multiplication for 72 multiplied by 36 with correct working and correct final answer. First row of working is correct: 4 3 2. Second row of working is correct: 2 1 6 0. Final answer is correct: 2 5 9 2.]() ###Misconcepted Incorrect answer###:![ Long multiplication for 72 multiplied by 36 with incorrect working and incorrect final answer. First row of working is incorrect: 4 2 2. Second row of working is incorrect: 2 7. Final answer is incorrect: 4 4 9.]()' sentences: - When solving an equation forgets to eliminate the coefficient in front of the variable in the last step - Thinks a variable next to a number means addition rather than multiplication - When two digits multiply to 10 or more during a multiplication problem, does not add carried value to the preceding digit pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on BAAI/bge-base-en-v1.5 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ '###Question###:Written Multiplication-Multiply 2 digit integers by 2 digit integers using long multiplication-Which working out is correct for $72 \\times 36$?\n###Correct Answer###:![ Long multiplication for 72 multiplied by 36 with correct working and correct final answer. First row of working is correct: 4 3 2. Second row of working is correct: 2 1 6 0. Final answer is correct: 2 5 9 2.]()\n###Misconcepted Incorrect answer###:![ Long multiplication for 72 multiplied by 36 with incorrect working and incorrect final answer. First row of working is incorrect: 4 2 2. Second row of working is incorrect: 2 7. Final answer is incorrect: 4 4 9.]()', 'When two digits multiply to 10 or more during a multiplication problem, does not add carried value to the preceding digit', 'Thinks a variable next to a number means addition rather than multiplication', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 3,503 training samples * Columns: anchor and positive * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------| | ###Question###:Area of Simple Shapes-Calculate the area of a parallelogram where the dimensions are given in the same units-What is the area of this shape? ![A parallelogram drawn on a square grid in purple with an area of 9 square units. The base is length 3 squares and the perpendicular height is also length 3 squares.]()
###Correct Answer###:\( 9 \)
###Misconcepted Incorrect answer###:\( 12 \)
| Counts half-squares as full squares when calculating area on a square grid | | ###Question###:Substitution into Formula-Substitute into simple formulae given in words-A theme park charges \( £ 8 \) entry fee and then \( £ 3 \) for every ride you go on.
Heena goes on \( 5 \) rides.
How much does she pay in total?
###Correct Answer###:\( £ 23 \)
###Misconcepted Incorrect answer###:\( £ 55 \)
| Combines variables with constants when writing a formula from a given situation | | ###Question###:Trial and Improvement and Iterative Methods-Use area to write algebraic expressions-The area of the rectangle on the right is \( 8 \mathrm{~cm}^{2} \).

Which of the following equations can we write from the information given? ![A rectangle with the short side labelled \(x\) and the opposite side labelled \(x^2 + 9\).]()
###Correct Answer###:\( x^{3}+9 x=8 \)
###Misconcepted Incorrect answer###:\( x^{3}+9=8 \)
| Only multiplies the first term in the expansion of a bracket | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `num_train_epochs`: 10 - `fp16`: True - `push_to_hub`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 10 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: True - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 1.1416 | 500 | 0.341 | | 2.2831 | 1000 | 0.1082 | | 3.4247 | 1500 | 0.0485 | | 4.5662 | 2000 | 0.0226 | | 5.7078 | 2500 | 0.0133 | | 6.8493 | 3000 | 0.0066 | | 7.9909 | 3500 | 0.0042 | | 9.1324 | 4000 | 0.0017 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.1.1 - Transformers: 4.45.2 - PyTorch: 2.5.1+cu121 - Accelerate: 1.1.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```