--- license: mit tags: - generated_from_trainer metrics: - bleu model-index: - name: ViT5_2048 results: [] --- # ViT5_2048 This model is a fine-tuned version of [VietAI/vit5-base-vietnews-summarization](https://huggingface.co/VietAI/vit5-base-vietnews-summarization) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.492714524269104 - Rouge-1: 0.3152 - Rouge-2: 0.171 - Rouge-4: 0.1004 - Rouge-l: 0.271 - Rouge-w-1.2: 0.1115 - Rouge-s4: 0.1296 - Rouge-su4: 0.1612 - R: 0.2638 - P: 0.3914 - Bleu: 14.786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-4 | Rouge-l | Rouge-w-1.2 | Rouge-s4 | Rouge-su4 | R | P | Bleu | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:-----------:|:--------:|:---------:|:------:|:------:|:-------:| | 0.578 | 1.0 | 629 | 0.5057 | 0.1566 | 0.1075 | 0.074 | 0.1438 | 0.0597 | 0.0896 | 0.1009 | 0.119 | 0.2286 | 2.2078 | | 0.5241 | 2.0 | 1258 | 0.4915 | 0.3766 | 0.2443 | 0.1622 | 0.342 | 0.1442 | 0.1993 | 0.2293 | 0.3074 | 0.486 | 19.4445 | | 0.4722 | 3.0 | 1887 | 0.4928 | 0.3677 | 0.2403 | 0.16 | 0.3336 | 0.1439 | 0.1963 | 0.2254 | 0.3038 | 0.4656 | 19.0032 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3