# Usage Clone repo ```bash git clone https://github.com/nguyenhoanganh2002/XTTSv2-Finetuning-for-New-Languages.git cd XTTSv2-Finetuning-for-New-Languages pip install -r requirements.txt ``` Pull model's weights ```python from huggingface_hub import snapshot_download snapshot_download(repo_id="anhnh2002/vnTTS", repo_type="model", local_dir="model/") ``` Load model ```python from pprint import pprint import torch import torchaudio from tqdm import tqdm from underthesea import sent_tokenize from vinorm import TTSnorm from TTS.tts.configs.xtts_config import XttsConfig from TTS.tts.models.xtts import Xtts device = "cuda:0" xtts_checkpoint = "model/model.pth" xtts_config = "model/config.json" xtts_vocab = "model/vocab.json" config = XttsConfig() config.load_json(xtts_config) XTTS_MODEL = Xtts.init_from_config(config) XTTS_MODEL.load_checkpoint(config, checkpoint_path=xtts_checkpoint, vocab_path=xtts_vocab, use_deepspeed=False) XTTS_MODEL.to(device) ``` Preprocessing and chunking ```python def preprocess_text(text, language="vi"): if language == "vi": text = TTSnorm(text, unknown=False, lower=False, rule=True) # split text into sentences if language in ["ja", "zh-cn"]: sentences = text.split("。") else: sentences = sent_tokenize(text) chunks = [] chunk_i = "" len_chunk_i = 0 for sentence in sentences: chunk_i += " " + sentence len_chunk_i += len(sentence.split()) if len_chunk_i > 30: chunks.append(chunk_i.strip()) chunk_i = "" len_chunk_i = 0 if (len(chunks) > 0) and (len_chunk_i < 15): chunks[-1] += chunk_i else: chunks.append(chunk_i) return chunks ``` Generate latent embeddings for the speaker ```python speaker_audio_file = "model/vi_man.wav" gpt_cond_latent, speaker_embedding = XTTS_MODEL.get_conditioning_latents( audio_path=speaker_audio_file, gpt_cond_len=XTTS_MODEL.config.gpt_cond_len, max_ref_length=XTTS_MODEL.config.max_ref_len, sound_norm_refs=XTTS_MODEL.config.sound_norm_refs, ) ``` Inference ```python def tts( model: Xtts, text: str, language: str, gpt_cond_latent: torch.Tensor, speaker_embedding: torch.Tensor, verbose: bool = False, ): # preprocess text chunks = preprocess_text(text, language) wav_chunks = [] for text in tqdm(chunks): if text.strip() == "": continue wav_chunk = model.inference( text=text, language=language, gpt_cond_latent=gpt_cond_latent, speaker_embedding=speaker_embedding, length_penalty=1.0, repetition_penalty=10.0, top_k=10, top_p=0.5, ) wav_chunk["wav"] = torch.tensor(wav_chunk["wav"]) wav_chunks.append(wav_chunk["wav"]) out_wav = torch.cat(wav_chunks, dim=0).unsqueeze(0).cpu() return out_wav from IPython.display import Audio audio = tts( model=XTTS_MODEL, text="Xin chào, tôi là một hệ thống chuyển đổi văn bản tiếng Việt thành giọng nói.", #Hello, I am a Vietnamese text to speech conversion system. language="vi", gpt_cond_latent=gpt_cond_latent, speaker_embedding=speaker_embedding, verbose=True, ) Audio(audio, rate=24000) ``` # License This project uses a model licensed under the Coqui Public Model License 1.0.0, which permits non-commercial use only. This includes personal research, testing, and charitable purposes. Commercial entities may use it for non-commercial research and evaluation. Revenue-generating activities are prohibited. Users must include the license terms when distributing the model or its outputs. For full details, please refer to: https://coqui.ai/cpml