--- language: - vi base_model: openai/whisper-small-vi-v2 tags: - generated_from_trainer datasets: - vi_500/80k metrics: - wer model-index: - name: Whisper Small Vi - Anh Phuong results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: vi 500 type: vi_500/80k args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 5.828968294497862 --- # Whisper Small Vi - Anh Phuong This model is a fine-tuned version of [openai/whisper-small-vi-v2](https://huggingface.co/openai/whisper-small-vi-v2) on the vi 500 dataset. It achieves the following results on the evaluation set: - Loss: 0.1002 - Wer: 5.8290 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1638 | 0.2 | 1000 | 0.1707 | 9.6824 | | 0.1233 | 0.4 | 2000 | 0.1302 | 7.4792 | | 0.1063 | 0.6 | 3000 | 0.1097 | 6.4330 | | 0.0962 | 0.8 | 4000 | 0.1002 | 5.8290 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1