--- language: - vi base_model: openai/whisper-tiny-vi-v1 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Tiny Vi - Anh Phuong results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: vi 500 type: mozilla-foundation/common_voice_11_0 args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 17.927542787107694 --- # Whisper Tiny Vi - Anh Phuong This model is a fine-tuned version of [openai/whisper-tiny-vi-v1](https://huggingface.co/openai/whisper-tiny-vi-v1) on the vi 500 dataset. It achieves the following results on the evaluation set: - Loss: 0.3071 - Wer: 17.9275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4594 | 0.16 | 1000 | 0.4406 | 24.6174 | | 0.3731 | 0.32 | 2000 | 0.3586 | 20.4809 | | 0.3199 | 0.48 | 3000 | 0.3223 | 18.8015 | | 0.3026 | 0.64 | 4000 | 0.3071 | 17.9275 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1