--- license: unknown datasets: - anilguven/turkish_tweet_emotion_dataset language: - tr metrics: - accuracy - f1 - precision - recall tags: - multilingual - turkish - bert - tweet - emotion - sentiment --- ### Model Info This model was developed/finetuned for tweet emotion detection task for the Turkish Language. This model was finetuned via tweet dataset. This dataset contains 5 classes: angry, happy, sad, surprised and afraid. - LABEL_0: angry - LABEL_1: afraid - LABEL_2: happy - LABEL_3: surprised - LABEL_4: sad ### Model Sources - **Dataset:** https://huggingface.co/datasets/anilguven/turkish_tweet_emotion_dataset - **Paper:** https://ieeexplore.ieee.org/document/9559014 - **Demo-Coding [optional]:** https://github.com/anil1055/Turkish_tweet_emotion_analysis_with_language_models - **Finetuned from model [optional]:** https://huggingface.co/bert-base-multilingual-uncased #### Preprocessing You must apply removing stopwords, stemming, or lemmatization process for Turkish. ### Results - eval_loss = 0.5407382257189601 - mcc = 0.7682691555667568 - Accuracy: %81.37 ## Citation **BibTeX:** *@INPROCEEDINGS{9559014, author={Guven, Zekeriya Anil}, booktitle={2021 6th International Conference on Computer Science and Engineering (UBMK)}, title={Comparison of BERT Models and Machine Learning Methods for Sentiment Analysis on Turkish Tweets}, year={2021}, volume={}, number={}, pages={98-101}, keywords={Computer science;Sentiment analysis;Analytical models;Social networking (online);Computational modeling;Bit error rate;Random forests;Sentiment Analysis;BERT;Machine Learning;Text Classification;Tweet Analysis.}, doi={10.1109/UBMK52708.2021.9559014}}* **APA:** *Guven, Z. A. (2021, September). Comparison of BERT models and machine learning methods for sentiment analysis on Turkish tweets. In 2021 6th International Conference on Computer Science and Engineering (UBMK) (pp. 98-101). IEEE.*