# Copyright 2024 AniMemory Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass import numpy as np import PIL.Image import inspect from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from transformers import ( CLIPImageProcessor, CLIPVisionModelWithProjection, XLMRobertaTokenizerFast, ) from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback from diffusers.image_processor import PipelineImageInput, VaeImageProcessor from diffusers.loaders import ( FromSingleFileMixin, IPAdapterMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin, ) from diffusers.models import ImageProjection, UNet2DConditionModel from diffusers.models.attention_processor import ( AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor, ) from diffusers.models.lora import adjust_lora_scale_text_encoder from diffusers.utils import ( USE_PEFT_BACKEND, deprecate, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers, ) from diffusers.utils.torch_utils import randn_tensor from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin from diffusers.utils import BaseOutput if is_torch_xla_available(): import torch_xla.core.xla_model as xm XLA_AVAILABLE = True else: XLA_AVAILABLE = False @dataclass class AniMemoryPipelineOutput(BaseOutput): """ Output class for Stable Diffusion pipelines. Args: images (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. """ images: Union[List[PIL.Image.Image], np.ndarray] logger = logging.get_logger(__name__) # pylint: disable=invalid-name # TODO: update prompt case EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import AniMemoryPipeline >>> pipe = AniMemoryPipeline.from_pretrained("animEEEmpire/AniMemory-alpha", torch_dtype=torch.bfloat16) >>> pipe = pipe.to("cuda") >>> prompt = "一只凶恶的狼,猩红的眼神,在午夜咆哮,月光皎洁" >>> negative_prompt = "nsfw, worst quality, low quality, normal quality, low resolution, monochrome, blurry, wrong, Mutated hands and fingers, text, ugly faces, twisted, jpeg artifacts, watermark, low contrast, realistic" >>> image = pipe( ... prompt=prompt, ... negative_prompt=negative_prompt, ... num_inference_steps=40, ... height=1024, ... width=1024, ... guidance_scale=6.0, ... ).images[0] >>> image.save("output.png") ``` """ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): r""" Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). Args: noise_cfg (`torch.Tensor`): The predicted noise tensor for the guided diffusion process. noise_pred_text (`torch.Tensor`): The predicted noise tensor for the text-guided diffusion process. guidance_rescale (`float`, *optional*, defaults to 0.0): A rescale factor applied to the noise predictions. Returns: noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor. """ std_text = noise_pred_text.std( dim=list(range(1, noise_pred_text.ndim)), keepdim=True ) std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) # rescale the results from guidance (fixes overexposure) noise_pred_rescaled = noise_cfg * (std_text / std_cfg) # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images noise_cfg = ( guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg ) return noise_cfg # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps def retrieve_timesteps( scheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, sigmas: Optional[List[float]] = None, **kwargs, ): r""" Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. Args: scheduler (`SchedulerMixin`): The scheduler to get timesteps from. num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` must be `None`. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, `num_inference_steps` and `sigmas` must be `None`. sigmas (`List[float]`, *optional*): Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, `num_inference_steps` and `timesteps` must be `None`. Returns: `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the second element is the number of inference steps. """ if timesteps is not None and sigmas is not None: raise ValueError( "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values" ) if timesteps is not None: accepts_timesteps = "timesteps" in set( inspect.signature(scheduler.set_timesteps).parameters.keys() ) if not accepts_timesteps: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" timestep schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) elif sigmas is not None: accept_sigmas = "sigmas" in set( inspect.signature(scheduler.set_timesteps).parameters.keys() ) if not accept_sigmas: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" sigmas schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) else: scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) timesteps = scheduler.timesteps return timesteps, num_inference_steps def split_input_ids( input_ids, attention_mask, start, model_max_length, bos_token_id, eos_token_id, pad_token_id, ): iids_list = [] mask_list = [] if start > 0: cur_input_ids = input_ids[start - 1 :] cur_input_ids[0] = bos_token_id if attention_mask is not None: cur_attention_mask = attention_mask[start - 1 :] cur_attention_mask[0] = 1 else: cur_input_ids = input_ids if attention_mask is not None: cur_attention_mask = attention_mask n = len(cur_input_ids) for i in range(1, n - model_max_length + 2, model_max_length - 2): ids_chunk = ( cur_input_ids[0].unsqueeze(0), cur_input_ids[i : i + model_max_length - 2], cur_input_ids[-1].unsqueeze(0), ) ids_chunk = torch.cat(ids_chunk) if attention_mask is not None: mask_chunk = ( cur_attention_mask[0].unsqueeze(0), cur_attention_mask[i : i + model_max_length - 2], cur_attention_mask[-1].unsqueeze(0), ) mask_chunk = torch.cat(mask_chunk) if ids_chunk[-2] != eos_token_id and ids_chunk[-2] != pad_token_id: ids_chunk[-1] = eos_token_id if attention_mask is not None: mask_chunk[-1] = 1 if ids_chunk[1] == pad_token_id: ids_chunk[1] = eos_token_id if attention_mask is not None: mask_chunk[1] = 1 iids_list.append(ids_chunk) if attention_mask is not None: mask_list.append(mask_chunk) return iids_list, mask_list if len(mask_list) > 0 else None # Modified from [library.train_util.get_input_ids](https://github.com/kohya-ss/sd-scripts/blob/e5ac09574928ec02fba5fe78267764d26bb7faa6/library/train_util.py#L795) def get_input_ids( caption, tokenizer, tokenizer_max_length, dense_caption_split_method, chunk, punctuation_ids, ): prompt_tokens = tokenizer( caption, max_length=tokenizer_max_length, padding="max_length", truncation=True, return_tensors="pt", ) input_ids = prompt_tokens["input_ids"].squeeze(0) attention_mask = prompt_tokens["attention_mask"].squeeze(0) if not chunk: return input_ids[None, ...], attention_mask[None, ...] iids_list = [] mask_list = [] if dense_caption_split_method == "length_split": iids_list, mask_list = split_input_ids( input_ids, attention_mask, 0, tokenizer.model_max_length, tokenizer.bos_token_id, tokenizer.eos_token_id, tokenizer.pad_token_id, ) elif dense_caption_split_method == "punctuation_split": can_split_tensor = torch.zeros_like(input_ids) for punctuation_id in punctuation_ids: can_split_tensor = torch.logical_or( can_split_tensor, input_ids == punctuation_id ) can_split_index = ( [0] + [i[0] for i in torch.nonzero(can_split_tensor).tolist()] + [len(input_ids) - 1] ) start = 1 end = 1 new_can_split_index = [] for i in range(len(can_split_index) - 1): pre = can_split_index[i] new_can_split_index.append(pre) nxt = can_split_index[i + 1] cur = pre + tokenizer.model_max_length - 2 while cur < nxt: new_can_split_index.append(cur) cur = cur + tokenizer.model_max_length - 2 new_can_split_index.append(can_split_index[-1]) can_split_index = new_can_split_index for i in can_split_index: if i - start + 1 > tokenizer.model_max_length - 2: if end == start: end = start + (tokenizer.model_max_length - 2) ids_chunk = torch.tensor( [tokenizer.pad_token_id] * tokenizer.model_max_length, dtype=torch.int64, ) ids_chunk[0] = tokenizer.bos_token_id ids_chunk[1 : 1 + end - start] = input_ids[start:end] ids_chunk[1 + end - start] = input_ids[-1] mask_chunk = torch.zeros(tokenizer.model_max_length).to(torch.int64) mask_chunk[0] = 1 mask_chunk[1 : 1 + end - start] = attention_mask[start:end] mask_chunk[1 + end - start] = attention_mask[-1] if ids_chunk[1] == tokenizer.pad_token_id: ids_chunk[1] = tokenizer.eos_token_id mask_chunk[1] = 1 if tokenizer.eos_token_id not in ids_chunk: ids_chunk[1 + end - start] = tokenizer.eos_token_id mask_chunk[1 + end - start] = 1 iids_list.append(ids_chunk) mask_list.append(mask_chunk) if len(iids_list) == 3: break start = end end = i + 1 if len(iids_list) == 0: iids_list, mask_list = split_input_ids( input_ids, attention_mask, 0, tokenizer.model_max_length, tokenizer.bos_token_id, tokenizer.eos_token_id, tokenizer.pad_token_id, ) elif len(iids_list) == 1: iids_list1, mask_list1 = split_input_ids( input_ids, attention_mask, start, tokenizer.model_max_length, tokenizer.bos_token_id, tokenizer.eos_token_id, tokenizer.pad_token_id, ) iids_list = (iids_list + iids_list1)[:3] mask_list = (mask_list + mask_list1)[:3] elif len(iids_list) == 2: iids_list1, mask_list1 = split_input_ids( input_ids, attention_mask, start, tokenizer.model_max_length, tokenizer.bos_token_id, tokenizer.eos_token_id, tokenizer.pad_token_id, ) iids_list = (iids_list + iids_list1)[:3] mask_list = (mask_list + mask_list1)[:3] else: raise NotImplementedError input_ids = torch.stack(iids_list) attention_mask = torch.stack(mask_list) return input_ids, attention_mask class AniMemoryPipeline( DiffusionPipeline, StableDiffusionMixin, FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin, IPAdapterMixin, ): # TODO: review r""" Pipeline for text-to-image generation using Stable Diffusion XL. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters Args: vae ([`MoVQ`]): Variational Auto-Encoder (VAE) Model. AniMemory uses [MoVQ](https://github.com/ai-forever/Kandinsky-3/blob/main/kandinsky3/movq.py) text_encoder ([`AniMemoryT5`]): Frozen text-encoder. AniMemory builds based on [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel). text_encoder_2 ([`AniMemoryAltCLip`]): Second frozen text-encoder. AniMemory builds based on [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection). tokenizer (`XLMRobertaTokenizerFast`): Tokenizer of class [XLMRobertaTokenizerFast](https://huggingface.co/docs/transformers/v4.46.3/en/model_doc/xlm-roberta#transformers.XLMRobertaTokenizerFast). tokenizer_2 (`XLMRobertaTokenizerFast`): Second Tokenizer of class [XLMRobertaTokenizerFast](https://huggingface.co/docs/transformers/v4.46.3/en/model_doc/xlm-roberta#transformers.XLMRobertaTokenizerFast). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`EulerAncestralDiscreteXPredScheduler`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): Whether the negative prompt embeddings shall be forced to always be set to 0. """ model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae" _optional_components = [ "tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2", "image_encoder", "feature_extractor", ] _callback_tensor_inputs = [ "latents", "prompt_embeds", "negative_prompt_embeds", "add_text_embeds", "add_time_ids", "negative_pooled_prompt_embeds", "negative_add_time_ids", ] def __init__( self, vae: "MoVQ", # type: ignore text_encoder: "AniMemoryT5", # type: ignore text_encoder_2: "AniMemoryAltCLip", # type: ignore tokenizer: XLMRobertaTokenizerFast, tokenizer_2: XLMRobertaTokenizerFast, unet: UNet2DConditionModel, scheduler: "EulerAncestralDiscreteXPredScheduler", # type: ignore image_encoder: CLIPVisionModelWithProjection = None, feature_extractor: CLIPImageProcessor = None, force_zeros_for_empty_prompt: bool = True, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, tokenizer=tokenizer, tokenizer_2=tokenizer_2, unet=unet, scheduler=scheduler, image_encoder=image_encoder, feature_extractor=feature_extractor, ) self.register_to_config( force_zeros_for_empty_prompt=force_zeros_for_empty_prompt ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.default_sample_size = self.unet.config.sample_size self.unet.time_proj.downscale_freq_shift = 1 self.scheduler.config.clip_sample = False self.scheduler.config.timestep_spacing = "linspace" self.scheduler.config.prediction_type = "sample" self.scheduler.rescale_betas_zero_snr() def encode_prompt( self, prompt: str, prompt_2: Optional[str] = None, device: Optional[torch.device] = None, num_images_per_prompt: int = 1, do_classifier_free_guidance: bool = True, negative_prompt: Optional[str] = None, negative_prompt_2: Optional[str] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, pooled_prompt_embeds: Optional[torch.Tensor] = None, negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is used in both text-encoders device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). negative_prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. pooled_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ if device is None: device = self._execution_device # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance( self, StableDiffusionXLLoraLoaderMixin ): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if self.text_encoder is not None: if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None: if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) else: scale_lora_layers(self.text_encoder_2, lora_scale) prompt = [prompt] if isinstance(prompt, str) else prompt if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # Define tokenizers and text encoders tokenizers = ( [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] ) text_encoders = ( [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] ) punctuation_ids = [ [5, 4, 74, 32, 38, 4730, 30, 4, 74, 32, 38, 4730], [5, 4, 74, 32, 38, 4730, 30, 4, 74, 32, 38, 4730], ] max_token_length = 227 if prompt_embeds is None: prompt_2 = prompt_2 or prompt prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 # textual inversion: process multi-vector tokens if necessary prompt_embeds_list = [] prompts = [prompt, prompt_2] text_encoder_idx = 0 for prompt, tokenizer, text_encoder in zip( prompts, tokenizers, text_encoders ): text_input_ids, attention_mask = get_input_ids( prompt, tokenizers[text_encoder_idx], max_token_length, "punctuation_split", False if text_encoder_idx == 0 else True, punctuation_ids[text_encoder_idx], ) tk_len = text_input_ids.shape[-1] text_input_ids = text_input_ids.reshape((-1, tk_len)) attention_mask = attention_mask.reshape((-1, tk_len)) prompt_embeds, pooled_output = text_encoder( text_input_ids.to(device), attention_mask.to(device) ) if text_encoder_idx == 1: tmp_ids = text_input_ids.reshape(-1, 3, text_input_ids.shape[-1]) _, n2, tk_len2 = tmp_ids.size() prompt_embeds = prompt_embeds.reshape( (-1, n2 * tk_len2, prompt_embeds.shape[-1]) ) if n2 > 1: states_list = [prompt_embeds[:, 0].unsqueeze(1)] for i in range( 1, max_token_length, tokenizers[text_encoder_idx].model_max_length, ): states_list.append( prompt_embeds[ :, i : i + tokenizers[text_encoder_idx].model_max_length - 2, ] ) states_list.append(prompt_embeds[:, -1].unsqueeze(1)) prompt_embeds = torch.cat(states_list, dim=1) pooled_prompt_embeds = pooled_output[::n2] prompt_embeds_list.append(prompt_embeds) text_encoder_idx += 1 prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) # get unconditional embeddings for classifier free guidance zero_out_negative_prompt = ( negative_prompt is None and self.config.force_zeros_for_empty_prompt ) if ( do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt ): negative_prompt_embeds = torch.zeros_like(prompt_embeds) negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) elif do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = negative_prompt or "" negative_prompt_2 = negative_prompt_2 or negative_prompt negative_prompt = ( batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt ) negative_prompt_2 = ( batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 ) uncond_tokens: List[str] if prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = [negative_prompt, negative_prompt_2] negative_prompt_embeds_list = [] text_encoder_idx = 0 for negative_prompt, tokenizer, text_encoder in zip( uncond_tokens, tokenizers, text_encoders ): if isinstance(self, TextualInversionLoaderMixin): negative_prompt = self.maybe_convert_prompt( negative_prompt, tokenizer ) negative_text_input_ids, negative_attention_mask = get_input_ids( negative_prompt, tokenizers[text_encoder_idx], max_token_length, "punctuation_split", False if text_encoder_idx == 0 else True, punctuation_ids[text_encoder_idx], ) tk_len = negative_text_input_ids.shape[-1] negative_text_input_ids = negative_text_input_ids.reshape((-1, tk_len)) negative_attention_mask = negative_attention_mask.reshape((-1, tk_len)) negative_prompt_embeds, negative_pooled_ouput = text_encoder( negative_text_input_ids.to(device), negative_attention_mask.to(device), ) if text_encoder_idx == 1: negative_tmp_ids = negative_text_input_ids.reshape( -1, 3, negative_text_input_ids.shape[-1] ) _, n2, tk_len2 = negative_tmp_ids.size() negative_prompt_embeds = negative_prompt_embeds.reshape( (-1, n2 * tk_len2, negative_prompt_embeds.shape[-1]) ) if n2 > 1: states_list = [negative_prompt_embeds[:, 0].unsqueeze(1)] for i in range( 1, max_token_length, tokenizers[text_encoder_idx].model_max_length, ): states_list.append( negative_prompt_embeds[ :, i : i + tokenizers[text_encoder_idx].model_max_length - 2, ] ) states_list.append(negative_prompt_embeds[:, -1].unsqueeze(1)) negative_prompt_embeds = torch.cat(states_list, dim=1) negative_pooled_prompt_embeds = negative_pooled_ouput[::n2] negative_prompt_embeds_list.append(negative_prompt_embeds) text_encoder_idx += 1 negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) if self.text_encoder_2 is not None: prompt_embeds = prompt_embeds.to( dtype=self.text_encoder_2.dtype, device=device ) else: prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view( bs_embed * num_images_per_prompt, seq_len, -1 ) if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] if self.text_encoder_2 is not None: negative_prompt_embeds = negative_prompt_embeds.to( dtype=self.text_encoder_2.dtype, device=device ) else: negative_prompt_embeds = negative_prompt_embeds.to( dtype=self.unet.dtype, device=device ) negative_prompt_embeds = negative_prompt_embeds.repeat( 1, num_images_per_prompt, 1 ) negative_prompt_embeds = negative_prompt_embeds.view( batch_size * num_images_per_prompt, seq_len, -1 ) pooled_prompt_embeds = pooled_prompt_embeds.repeat( 1, num_images_per_prompt ).view(bs_embed * num_images_per_prompt, -1) if do_classifier_free_guidance: negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat( 1, num_images_per_prompt ).view(bs_embed * num_images_per_prompt, -1) if self.text_encoder is not None: if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None: if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder_2, lora_scale) # breakpoint() return ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image def encode_image( self, image, device, num_images_per_prompt, output_hidden_states=None ): dtype = next(self.image_encoder.parameters()).dtype if not isinstance(image, torch.Tensor): image = self.feature_extractor(image, return_tensors="pt").pixel_values image = image.to(device=device, dtype=dtype) if output_hidden_states: image_enc_hidden_states = self.image_encoder( image, output_hidden_states=True ).hidden_states[-2] image_enc_hidden_states = image_enc_hidden_states.repeat_interleave( num_images_per_prompt, dim=0 ) uncond_image_enc_hidden_states = self.image_encoder( torch.zeros_like(image), output_hidden_states=True ).hidden_states[-2] uncond_image_enc_hidden_states = ( uncond_image_enc_hidden_states.repeat_interleave( num_images_per_prompt, dim=0 ) ) return image_enc_hidden_states, uncond_image_enc_hidden_states else: image_embeds = self.image_encoder(image).image_embeds image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_embeds = torch.zeros_like(image_embeds) return image_embeds, uncond_image_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds def prepare_ip_adapter_image_embeds( self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance, ): image_embeds = [] if do_classifier_free_guidance: negative_image_embeds = [] if ip_adapter_image_embeds is None: if not isinstance(ip_adapter_image, list): ip_adapter_image = [ip_adapter_image] if len(ip_adapter_image) != len( self.unet.encoder_hid_proj.image_projection_layers ): raise ValueError( f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." ) for single_ip_adapter_image, image_proj_layer in zip( ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers ): output_hidden_state = not isinstance(image_proj_layer, ImageProjection) single_image_embeds, single_negative_image_embeds = self.encode_image( single_ip_adapter_image, device, 1, output_hidden_state ) image_embeds.append(single_image_embeds[None, :]) if do_classifier_free_guidance: negative_image_embeds.append(single_negative_image_embeds[None, :]) else: for single_image_embeds in ip_adapter_image_embeds: if do_classifier_free_guidance: ( single_negative_image_embeds, single_image_embeds, ) = single_image_embeds.chunk(2) negative_image_embeds.append(single_negative_image_embeds) image_embeds.append(single_image_embeds) ip_adapter_image_embeds = [] for i, single_image_embeds in enumerate(image_embeds): single_image_embeds = torch.cat( [single_image_embeds] * num_images_per_prompt, dim=0 ) if do_classifier_free_guidance: single_negative_image_embeds = torch.cat( [negative_image_embeds[i]] * num_images_per_prompt, dim=0 ) single_image_embeds = torch.cat( [single_negative_image_embeds, single_image_embeds], dim=0 ) single_image_embeds = single_image_embeds.to(device=device) ip_adapter_image_embeds.append(single_image_embeds) return ip_adapter_image_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set( inspect.signature(self.scheduler.step).parameters.keys() ) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set( inspect.signature(self.scheduler.step).parameters.keys() ) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, prompt_2, height, width, callback_steps, negative_prompt=None, negative_prompt_2=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError( f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if callback_steps is not None and ( not isinstance(callback_steps, int) or callback_steps <= 0 ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt_2 is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and ( not isinstance(prompt, str) and not isinstance(prompt, list) ): raise ValueError( f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" ) elif prompt_2 is not None and ( not isinstance(prompt_2, str) and not isinstance(prompt_2, list) ): raise ValueError( f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}" ) if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) elif negative_prompt_2 is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_embeds is not None and pooled_prompt_embeds is None: raise ValueError( "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." ) if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: raise ValueError( "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." ) if ip_adapter_image is not None and ip_adapter_image_embeds is not None: raise ValueError( "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." ) if ip_adapter_image_embeds is not None: if not isinstance(ip_adapter_image_embeds, list): raise ValueError( f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" ) elif ip_adapter_image_embeds[0].ndim not in [3, 4]: raise ValueError( f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents( self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, ): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor( shape, generator=generator, device=device, dtype=dtype ) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents def _get_add_time_ids( self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None, ): add_time_ids = list(original_size + crops_coords_top_left + target_size) passed_add_embed_dim = ( self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim ) expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features if expected_add_embed_dim != passed_add_embed_dim: raise ValueError( f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." ) add_time_ids = torch.tensor([add_time_ids], dtype=dtype) return add_time_ids @property def device(self) -> torch.device: r""" Returns: `torch.device`: The torch device on which the pipeline is located. """ module_names, _ = self._get_signature_keys(self) modules = [getattr(self, n, None) for n in module_names] modules = [m for m in modules if isinstance(m, torch.nn.Module)] for module in modules: return module.device return torch.device("cpu") @property def _execution_device(self): """ Returns the device on which the pipeline's models will be executed. After calling [`~DiffusionPipeline.enable_sequential_cpu_offload`] the execution device can only be inferred from Accelerate's module hooks. """ for name, model in self.components.items(): if ( not isinstance(model, torch.nn.Module) or name in self._exclude_from_cpu_offload ): continue if not hasattr(model, "_hf_hook"): return self.device for module in model.modules(): if ( hasattr(module, "_hf_hook") and hasattr(module._hf_hook, "execution_device") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device def upcast_vae(self): dtype = self.vae.dtype self.vae.to(dtype=torch.float32) use_torch_2_0_or_xformers = isinstance( self.vae.decoder.mid_block.attentions[0].processor, ( AttnProcessor2_0, XFormersAttnProcessor, FusedAttnProcessor2_0, ), ) # if xformers or torch_2_0 is used attention block does not need # to be in float32 which can save lots of memory if use_torch_2_0_or_xformers: self.vae.post_quant_conv.to(dtype) self.vae.decoder.conv_in.to(dtype) self.vae.decoder.mid_block.to(dtype) # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32, ) -> torch.Tensor: """ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 Args: w (`torch.Tensor`): Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. embedding_dim (`int`, *optional*, defaults to 512): Dimension of the embeddings to generate. dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): Data type of the generated embeddings. Returns: `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`. """ assert len(w.shape) == 1 w = w * 1000.0 half_dim = embedding_dim // 2 emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) emb = w.to(dtype)[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0, 1)) assert emb.shape == (w.shape[0], embedding_dim) return emb @property def guidance_scale(self): return self._guidance_scale @property def guidance_rescale(self): return self._guidance_rescale @property def clip_skip(self): return self._clip_skip # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None @property def cross_attention_kwargs(self): return self._cross_attention_kwargs @property def denoising_end(self): return self._denoising_end @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, timesteps: List[int] = None, sigmas: List[float] = None, denoising_end: Optional[float] = None, guidance_scale: float = 5.0, negative_prompt: Optional[Union[str, List[str]]] = None, negative_prompt_2: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, pooled_prompt_embeds: Optional[torch.Tensor] = None, negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, output_type: Optional[str] = "pil", return_dict: bool = True, cross_attention_kwargs: Optional[Dict[str, Any]] = None, guidance_rescale: float = 0.0, original_size: Optional[Tuple[int, int]] = None, crops_coords_top_left: Tuple[int, int] = (0, 0), target_size: Optional[Tuple[int, int]] = None, negative_original_size: Optional[Tuple[int, int]] = None, negative_crops_coords_top_left: Tuple[int, int] = (0, 0), negative_target_size: Optional[Tuple[int, int]] = None, clip_skip: Optional[int] = None, callback_on_step_end: Optional[ Union[ Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks, ] ] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is used in both text-encoders height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. This is set to 1024 by default for the best results. Anything below 512 pixels won't work well for [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) and checkpoints that are not specifically fine-tuned on low resolutions. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image. This is set to 1024 by default for the best results. Anything below 512 pixels won't work well for [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) and checkpoints that are not specifically fine-tuned on low resolutions. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. sigmas (`List[float]`, *optional*): Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. denoising_end (`float`, *optional*): When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be completed before it is intentionally prematurely terminated. As a result, the returned sample will still retain a substantial amount of noise as determined by the discrete timesteps selected by the scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) guidance_scale (`float`, *optional*, defaults to 5.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). negative_prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. pooled_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not provided, embeddings are computed from the `ip_adapter_image` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead of a plain tuple. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). guidance_rescale (`float`, *optional*, defaults to 0.0): Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when using zero terminal SNR. original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): For most cases, `target_size` should be set to the desired height and width of the generated image. If not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): To negatively condition the generation process based on a specific image resolution. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): To negatively condition the generation process based on a target image resolution. It should be as same as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of each denoising step during the inference. with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ callback = kwargs.pop("callback", None) callback_steps = kwargs.pop("callback_steps", None) if callback is not None: deprecate( "callback", "1.0.0", "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if callback_steps is not None: deprecate( "callback_steps", "1.0.0", "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs # 0. Default height and width to unet height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor original_size = original_size or (height, width) target_size = target_size or (height, width) # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, prompt_2, height, width, callback_steps, negative_prompt, negative_prompt_2, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs, ) self._guidance_scale = guidance_scale self._guidance_rescale = guidance_rescale self._clip_skip = clip_skip self._cross_attention_kwargs = cross_attention_kwargs self._denoising_end = denoising_end self._interrupt = False # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # 3. Encode input prompt lora_scale = ( self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None ) ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, lora_scale=lora_scale, clip_skip=self.clip_skip, ) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas ) # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels # breakpoint() latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Prepare added time ids & embeddings add_text_embeds = pooled_prompt_embeds text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) add_time_ids = self._get_add_time_ids( original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim, ) if negative_original_size is not None and negative_target_size is not None: negative_add_time_ids = self._get_add_time_ids( negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim, ) else: negative_add_time_ids = add_time_ids if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) add_text_embeds = torch.cat( [negative_pooled_prompt_embeds, add_text_embeds], dim=0 ) add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) prompt_embeds = prompt_embeds.to(device) add_text_embeds = add_text_embeds.to(device) add_time_ids = add_time_ids.to(device).repeat( batch_size * num_images_per_prompt, 1 ) if ip_adapter_image is not None or ip_adapter_image_embeds is not None: image_embeds = self.prepare_ip_adapter_image_embeds( ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance, ) # 8. Denoising loop num_warmup_steps = max( len(timesteps) - num_inference_steps * self.scheduler.order, 0 ) # 8.1 Apply denoising_end if ( self.denoising_end is not None and isinstance(self.denoising_end, float) and self.denoising_end > 0 and self.denoising_end < 1 ): discrete_timestep_cutoff = int( round( self.scheduler.config.num_train_timesteps - (self.denoising_end * self.scheduler.config.num_train_timesteps) ) ) num_inference_steps = len( list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)) ) timesteps = timesteps[:num_inference_steps] # 9. Optionally get Guidance Scale Embedding timestep_cond = None if self.unet.config.time_cond_proj_dim is not None: guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat( batch_size * num_images_per_prompt ) timestep_cond = self.get_guidance_scale_embedding( guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim ).to(device=device, dtype=latents.dtype) self._num_timesteps = len(timesteps) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue # expand the latents if we are doing classifier free guidance latent_model_input = ( torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents ) latent_model_input = self.scheduler.scale_model_input( latent_model_input, t ) # predict the noise residual added_cond_kwargs = { "text_embeds": add_text_embeds, "time_ids": add_time_ids, } if ip_adapter_image is not None or ip_adapter_image_embeds is not None: added_cond_kwargs["image_embeds"] = image_embeds noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * ( noise_pred_text - noise_pred_uncond ) if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf noise_pred = rescale_noise_cfg( noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale, ) # compute the previous noisy sample x_t -> x_t-1 latents_dtype = latents.dtype latents = self.scheduler.step( noise_pred, t, latents, **extra_step_kwargs, return_dict=False )[0] if latents.dtype != latents_dtype: if torch.backends.mps.is_available(): # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 latents = latents.to(latents_dtype) if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop( "negative_prompt_embeds", negative_prompt_embeds ) add_text_embeds = callback_outputs.pop( "add_text_embeds", add_text_embeds ) negative_pooled_prompt_embeds = callback_outputs.pop( "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds ) add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids) negative_add_time_ids = callback_outputs.pop( "negative_add_time_ids", negative_add_time_ids ) # call the callback, if provided if i == len(timesteps) - 1 or ( (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 ): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() if not output_type == "latent": # make sure the VAE is in float32 mode, as it overflows in float16 needs_upcasting = ( self.vae.dtype == torch.float16 and self.vae.config.force_upcast ) if needs_upcasting: self.upcast_vae() latents = latents.to( next(iter(self.vae.post_quant_conv.parameters())).dtype ) elif latents.dtype != self.vae.dtype: if torch.backends.mps.is_available(): # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 self.vae = self.vae.to(latents.dtype) # unscale/denormalize the latents # denormalize with the mean and std if available and not None has_latents_mean = ( hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None ) has_latents_std = ( hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None ) if has_latents_mean and has_latents_std: latents_mean = ( torch.tensor(self.vae.config.latents_mean) .view(1, 4, 1, 1) .to(latents.device, latents.dtype) ) latents_std = ( torch.tensor(self.vae.config.latents_std) .view(1, 4, 1, 1) .to(latents.device, latents.dtype) ) latents = ( latents * latents_std / self.vae.config.scaling_factor + latents_mean ) else: latents = latents / self.vae.config.scaling_factor image = self.vae.decode(latents) # cast back to fp16 if needed if needs_upcasting: self.vae.to(dtype=torch.float16) else: image = latents if not output_type == "latent": # apply watermark if available # if self.watermark is not None: # image = self.watermark.apply_watermark(image) image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return AniMemoryPipelineOutput(images=image)