--- language: - eng license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-eng results: [] --- # speaker-segmentation-fine-tuned-callhome-eng This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/callhome dataset. It achieves the following results on the evaluation set: - Loss: 0.4692 - Der: 0.1840 - False Alarm: 0.0616 - Missed Detection: 0.0711 - Confusion: 0.0513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.3907 | 1.0 | 362 | 0.4760 | 0.1920 | 0.0622 | 0.0739 | 0.0559 | | 0.4104 | 2.0 | 724 | 0.4737 | 0.1912 | 0.0704 | 0.0688 | 0.0520 | | 0.3848 | 3.0 | 1086 | 0.4567 | 0.1809 | 0.0595 | 0.0709 | 0.0504 | | 0.3688 | 4.0 | 1448 | 0.4680 | 0.1831 | 0.0581 | 0.0738 | 0.0512 | | 0.344 | 5.0 | 1810 | 0.4692 | 0.1840 | 0.0616 | 0.0711 | 0.0513 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1