--- language: - mr license: apache-2.0 tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-mr results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 8 args: mr metrics: - type: wer value: 32.811 name: Test WER - name: Test CER type: cer value: 7.692 --- # wav2vec2-large-xls-r-300m-mr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.5479 - Wer: 0.5740 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.7378 | 18.18 | 400 | 3.5047 | 1.0 | | 3.1707 | 36.36 | 800 | 2.6166 | 0.9912 | | 1.4942 | 54.55 | 1200 | 0.5778 | 0.6927 | | 1.2058 | 72.73 | 1600 | 0.5168 | 0.6362 | | 1.0558 | 90.91 | 2000 | 0.5105 | 0.6069 | | 0.9488 | 109.09 | 2400 | 0.5151 | 0.6089 | | 0.8588 | 127.27 | 2800 | 0.5157 | 0.5989 | | 0.7991 | 145.45 | 3200 | 0.5179 | 0.5740 | | 0.7545 | 163.64 | 3600 | 0.5348 | 0.5740 | | 0.7144 | 181.82 | 4000 | 0.5518 | 0.5724 | | 0.7041 | 200.0 | 4400 | 0.5479 | 0.5740 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-mr --dataset mozilla-foundation/common_voice_8_0 --config mr --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-mr" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "mr", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "या पानास लेखाचे स्वरूप यायला हावे" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 49.177 | 32.811 |