--- language: - ur license: apache-2.0 tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-ur-cv8 results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 8 args: ur metrics: - type: wer value: 42.376 name: Test WER - name: Test CER type: cer value: 18.18 --- # wav2vec2-large-xls-r-300m-ur-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.1443 - Wer: 0.5677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.6269 | 15.98 | 400 | 3.3246 | 1.0 | | 3.0546 | 31.98 | 800 | 2.8148 | 0.9963 | | 1.4589 | 47.98 | 1200 | 1.0237 | 0.6584 | | 1.0911 | 63.98 | 1600 | 0.9524 | 0.5966 | | 0.8879 | 79.98 | 2000 | 0.9827 | 0.5822 | | 0.7467 | 95.98 | 2400 | 0.9923 | 0.5840 | | 0.6427 | 111.98 | 2800 | 0.9988 | 0.5714 | | 0.5685 | 127.98 | 3200 | 1.0872 | 0.5807 | | 0.5068 | 143.98 | 3600 | 1.1194 | 0.5822 | | 0.463 | 159.98 | 4000 | 1.1138 | 0.5692 | | 0.4212 | 175.98 | 4400 | 1.1232 | 0.5714 | | 0.4056 | 191.98 | 4800 | 1.1443 | 0.5677 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-ur-cv8 --dataset mozilla-foundation/common_voice_8_0 --config ur --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-ur-cv8" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ur", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "اب نے ٹ پیس ان لیتے ہیں" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 52.146 | 42.376 |