--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: XLS-R-1B - Hindi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: hi metrics: - name: Test WER type: wer value: 15.899 - name: Test CER type: cer value: 5.83 --- # XLS-R-1B - Hindi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.6921 - Wer: 0.3547 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.0674 | 2.07 | 400 | 1.3411 | 0.8835 | | 1.324 | 4.15 | 800 | 0.9311 | 0.7142 | | 1.2023 | 6.22 | 1200 | 0.8060 | 0.6170 | | 1.1573 | 8.29 | 1600 | 0.7415 | 0.4972 | | 1.1117 | 10.36 | 2000 | 0.7248 | 0.4588 | | 1.0672 | 12.44 | 2400 | 0.6729 | 0.4350 | | 1.0336 | 14.51 | 2800 | 0.7117 | 0.4346 | | 1.0025 | 16.58 | 3200 | 0.7019 | 0.4272 | | 0.9578 | 18.65 | 3600 | 0.6792 | 0.4118 | | 0.9272 | 20.73 | 4000 | 0.6863 | 0.4156 | | 0.9321 | 22.8 | 4400 | 0.6535 | 0.3972 | | 0.8802 | 24.87 | 4800 | 0.6766 | 0.3906 | | 0.844 | 26.94 | 5200 | 0.6782 | 0.3949 | | 0.8387 | 29.02 | 5600 | 0.6916 | 0.3921 | | 0.8042 | 31.09 | 6000 | 0.6806 | 0.3797 | | 0.793 | 33.16 | 6400 | 0.7120 | 0.3831 | | 0.7567 | 35.23 | 6800 | 0.6862 | 0.3808 | | 0.7463 | 37.31 | 7200 | 0.6893 | 0.3709 | | 0.7053 | 39.38 | 7600 | 0.7096 | 0.3701 | | 0.6906 | 41.45 | 8000 | 0.6921 | 0.3676 | | 0.6891 | 43.52 | 8400 | 0.7167 | 0.3663 | | 0.658 | 45.6 | 8800 | 0.6833 | 0.3580 | | 0.6576 | 47.67 | 9200 | 0.6914 | 0.3569 | | 0.6358 | 49.74 | 9600 | 0.6922 | 0.3551 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-1b-hi-with-lm --dataset mozilla-foundation/common_voice_8_0 --config hi --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-1b-hi-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "hi", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "तुम्हारे पास तीन महीने बचे हैं" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 26.209 | 15.899 |