--- language: - lv license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Latvian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: lv metrics: - name: Test WER type: wer value: 9.633 - name: Test CER type: cer value: 2.614 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: lv metrics: - name: Test WER type: wer value: 36.11 - name: Test CER type: cer value: 14.244 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: lv metrics: - name: Test WER type: wer value: 44.12 --- # XLS-R-300M - Latvian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - LV dataset. It achieves the following results on the evaluation set: - Loss: 0.1660 - Wer: 0.1705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.489 | 2.56 | 400 | 3.3590 | 1.0 | | 2.9903 | 5.13 | 800 | 2.9704 | 1.0001 | | 1.6712 | 7.69 | 1200 | 0.6179 | 0.6566 | | 1.2635 | 10.26 | 1600 | 0.3176 | 0.4531 | | 1.0819 | 12.82 | 2000 | 0.2517 | 0.3508 | | 1.0136 | 15.38 | 2400 | 0.2257 | 0.3124 | | 0.9625 | 17.95 | 2800 | 0.1975 | 0.2311 | | 0.901 | 20.51 | 3200 | 0.1986 | 0.2097 | | 0.8842 | 23.08 | 3600 | 0.1904 | 0.2039 | | 0.8542 | 25.64 | 4000 | 0.1847 | 0.1981 | | 0.8244 | 28.21 | 4400 | 0.1805 | 0.1847 | | 0.7689 | 30.77 | 4800 | 0.1736 | 0.1832 | | 0.7825 | 33.33 | 5200 | 0.1698 | 0.1821 | | 0.7817 | 35.9 | 5600 | 0.1758 | 0.1803 | | 0.7488 | 38.46 | 6000 | 0.1663 | 0.1760 | | 0.7171 | 41.03 | 6400 | 0.1636 | 0.1721 | | 0.7222 | 43.59 | 6800 | 0.1663 | 0.1729 | | 0.7156 | 46.15 | 7200 | 0.1633 | 0.1715 | | 0.7121 | 48.72 | 7600 | 0.1666 | 0.1718 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config lv --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config lv --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "lv", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "domāju ka viņam viss labi" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 16.997 | 9.633 |