--- license: mit language: - ru - kbd datasets: - anzorq/kbd-ru widget: - text: Я иду домой. example_title: Я иду домой. - text: Дети играют во дворе. example_title: Дети играют во дворе. - text: Сколько тебе лет? example_title: Сколько тебе лет? - text: На следующий день мы отправились в путь. example_title: На следующий день мы отправились в путь. tags: - translation --- # m2m100_ru_kbd_44K This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on a ru-kbd dataset, containing 44K sentences from books, textbooks, dictionaries etc.. It achieves the following results on the evaluation set: - Loss: 0.9399 - Bleu: 22.389 - Gen Len: 16.562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 2.2391 | 0.18 | 1000 | 1.9921 | 7.4066 | 16.377 | | 1.8436 | 0.36 | 2000 | 1.6756 | 9.3443 | 18.428 | | 1.63 | 0.53 | 3000 | 1.5361 | 10.9057 | 17.134 | | 1.5205 | 0.71 | 4000 | 1.3994 | 12.6061 | 17.471 | | 1.4471 | 0.89 | 5000 | 1.3107 | 14.4452 | 16.985 | | 1.1915 | 1.07 | 6000 | 1.2462 | 15.1903 | 16.544 | | 1.1165 | 1.25 | 7000 | 1.1917 | 16.3859 | 17.044 | | 1.0654 | 1.43 | 8000 | 1.1351 | 17.617 | 16.481 | | 1.0464 | 1.6 | 9000 | 1.0939 | 18.649 | 16.517 | | 1.0376 | 1.78 | 10000 | 1.0603 | 18.2567 | 17.152 | | 1.0027 | 1.96 | 11000 | 1.0184 | 20.6011 | 16.875 | | 0.7741 | 2.14 | 12000 | 1.0159 | 20.4801 | 16.488 | | 0.7566 | 2.32 | 13000 | 0.9899 | 21.6967 | 16.681 | | 0.7346 | 2.49 | 14000 | 0.9738 | 21.8249 | 16.679 | | 0.7397 | 2.67 | 15000 | 0.9555 | 21.569 | 16.608 | | 0.6919 | 2.85 | 16000 | 0.9441 | 22.4658 | 16.493 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.10.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1 --- # Model inference ### 1. Install dependencies ```bash pip install transformers sentencepiece torch ctranslate2 ``` ### 2. Inference ## CTranslate2 model (quantized model, much faster inference) First, download the files for the model in ctranslate2 format: ```Python from huggingface_hub import hf_hub_download hf_hub_download(repo_id='anzorq/m2m100_418M_ft_ru-kbd_44K', subfolder='ctranslate2', filename='config.json', local_dir='./') hf_hub_download(repo_id='anzorq/m2m100_418M_ft_ru-kbd_44K', subfolder='ctranslate2', filename='model.bin', local_dir='./') hf_hub_download(repo_id='anzorq/m2m100_418M_ft_ru-kbd_44K', subfolder='ctranslate2', filename='sentencepiece.bpe.model', local_dir='./') hf_hub_download(repo_id='anzorq/m2m100_418M_ft_ru-kbd_44K', subfolder='ctranslate2', filename='shared_vocabulary.json', local_dir='./') ``` Run inference: ```Python import ctranslate2 import transformers translator = ctranslate2.Translator("ctranslate2") # Ensure correct path to the ctranslate2 model directory tokenizer = transformers.AutoTokenizer.from_pretrained("anzorq/m2m100_418M_ft_ru-kbd_44K") tgt_lang="zu" def translate(text, num_beams=4, num_return_sequences=4): num_return_sequences = min(num_return_sequences, num_beams) source = tokenizer.convert_ids_to_tokens(tokenizer.encode(text)) target_prefix = [tokenizer.lang_code_to_token[tgt_lang]] results = translator.translate_batch( [source], target_prefix=[target_prefix], beam_size=num_beams, num_hypotheses=num_return_sequences ) translations = [] for hypothesis in results[0].hypotheses: target = hypothesis[1:] decoded_sentence = tokenizer.decode(tokenizer.convert_tokens_to_ids(target)) translations.append(decoded_sentence) return text, translations # Test the translation text = "Текст для перевода" print(translate(text)) ``` ## Vanilla model ```Python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model_path = "anzorq/m2m100_418M_ft_ru-kbd_44K" tgt_lang="zu" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForSeq2SeqLM.from_pretrained(model_path) def translate(text, num_beams=4, num_return_sequences=4): inputs = tokenizer(text, return_tensors="pt") num_return_sequences = min(num_return_sequences, num_beams) translated_tokens = model.generate( **inputs, forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], num_beams=num_beams, num_return_sequences=num_return_sequences ) translations = [tokenizer.decode(translation, skip_special_tokens=True) for translation in translated_tokens] return text, translations # Test the translation text = "Текст для перевода" print(translate(text)) ```