--- library_name: transformers tags: [] --- # Parler-TTS Fine-tuned for Kabardian Language (Murat) This model is a fine-tuned version of the Parler-TTS model trained on a dataset of Kabardian speech from the speaker Murat Sokhov. ## Model Details: * **Model:** ParlerTTSForConditionalGeneration * **Base Model:** Parler-TTS mini v0.1 * **Training Data:** Kabardian speech dataset from "Murat" (anzorq/kbd_speech_murat) * **Training Configuration:** * `--train_dataset_name`: "anzorq/kbd_speech_murat" * `--train_metadata_dataset_name`: "anzorq/kbd_speech_murat-tagged-for-parler-tts" * `--num_train_epochs`: 4 * `--gradient_accumulation_steps`: 18 * `--gradient_checkpointing`: True * `--per_device_train_batch_size`: 2 * `--learning_rate`: 0.00008 * `--lr_scheduler_type`: "constant_with_warmup" * `--warmup_steps`: 50 * `--logging_steps`: 2 * `--freeze_text_encoder`: True * `--dtype`: "float16" * `--seed`: 456 ## Usage: ### Installation: ```bash pip install git+https://github.com/huggingface/parler-tts.git ``` ### Inference: ```python from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer import torch import soundfile as sf device = "cuda" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if device != "cpu" else torch.float32 model = ParlerTTSForConditionalGeneration.from_pretrained("anzorq/parler-tts-mini-kbd-Murat", torch_dtype=torch_dtype).to(device) tokenizer = AutoTokenizer.from_pretrained("anzorq/parler-tts-mini-kbd-Murat") prompt = "Уэшх нэужьым къиуа псы утхъуар, къэгубжьа хуэдэ, къыпэщӏэхуэр ирихьэхыну хьэзыру йожэх" description = "Murat's voice is very clear, but it is very confined in terms of pacing and delivery" # Simple transliteration since the original tokenizer used in Parler-TTS does not support Cyrillic symbols def transliterate(text): char_map = { 'а': 'a', 'б': 'b', 'в': 'v', 'г': 'g', 'д': 'd', 'е': 'e', 'ж': 'zh', 'з': 'z', 'и': 'i', 'й': 'j', 'к': 'k', 'л': 'l', 'м': 'm', 'н': 'n', 'о': 'o', 'п': 'p', 'р': 'r', 'с': 's', 'т': 't', 'у': 'u', 'ф': 'f', 'х': 'x', 'ц': 'c', 'ч': 'ch', 'ш': 'sh', 'щ': 'sx', 'ъ': '2', 'ы': 'y', 'ь': '3', 'э': '4', 'я': 'ya', 'ӏ': '1' } for cyrillic_char, latin_char in char_map.items(): text = text.replace(cyrillic_char, latin_char) return text transliterated_prompt = transliterate(prompt) # Generate audio input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device) prompt_input_ids = tokenizer(transliterated_prompt, return_tensors="pt").input_ids.to(device) generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids).to(torch.float32) audio_arr = generation.cpu().numpy().squeeze() # Save the audio to a file sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate) ```