--- language: - id license: apache-2.0 base_model: LazarusNLP/IndoNanoT5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: summarization-lora-3 results: [] --- # summarization-lora-3 This model is a fine-tuned version of [LazarusNLP/IndoNanoT5-base](https://huggingface.co/LazarusNLP/IndoNanoT5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5212 - Rouge1: 0.3932 - Rouge2: 0.0 - Rougel: 0.3893 - Rougelsum: 0.3908 - Gen Len: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.8224 | 1.0 | 892 | 0.5704 | 0.6572 | 0.0 | 0.6564 | 0.655 | 1.0 | | 0.6196 | 2.0 | 1784 | 0.5431 | 0.6602 | 0.0 | 0.6579 | 0.6606 | 1.0 | | 0.5778 | 3.0 | 2676 | 0.5373 | 0.6757 | 0.0 | 0.6756 | 0.6745 | 1.0 | | 0.5503 | 4.0 | 3568 | 0.5256 | 0.659 | 0.0 | 0.6569 | 0.6586 | 1.0 | | 0.5343 | 5.0 | 4460 | 0.5212 | 0.6659 | 0.0 | 0.6648 | 0.6661 | 1.0 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1