--- language: - ka license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - common_voice model-index: - name: wav2vec2-xls-r-1b-ka results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice ka args: ka metrics: - type: wer value: 7.39778066580026 name: WER LM - type: cer value: 1.1882089427096434 name: CER LM - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ka metrics: - name: Test WER type: wer value: 22.61 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ka metrics: - name: Test WER type: wer value: 21.58 --- # wav2vec2-xls-r-1b-ka This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/KA/NOIZY_STUDENT_2/ - KA dataset. It achieves the following results on the evaluation set: - Loss: 0.1022 - Wer: 0.1527 - Cer: 0.0221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.2839 | 6.45 | 400 | 0.2229 | 0.3609 | 0.0557 | | 0.9775 | 12.9 | 800 | 0.1271 | 0.2202 | 0.0317 | | 0.9045 | 19.35 | 1200 | 0.1268 | 0.2030 | 0.0294 | | 0.8652 | 25.8 | 1600 | 0.1211 | 0.1940 | 0.0287 | | 0.8505 | 32.26 | 2000 | 0.1192 | 0.1912 | 0.0276 | | 0.8168 | 38.7 | 2400 | 0.1086 | 0.1763 | 0.0260 | | 0.7737 | 45.16 | 2800 | 0.1098 | 0.1753 | 0.0256 | | 0.744 | 51.61 | 3200 | 0.1054 | 0.1646 | 0.0239 | | 0.7114 | 58.06 | 3600 | 0.1034 | 0.1573 | 0.0228 | | 0.6773 | 64.51 | 4000 | 0.1022 | 0.1527 | 0.0221 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0