--- library_name: transformers license: other base_model: Qwen/Qwen2.5-3B tags: - generated_from_trainer model-index: - name: outputs/gelato-3b results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: Qwen/Qwen2.5-3B load_in_8bit: false load_in_4bit: false strict: false datasets: - path: arcee-ai/eval_tome type: sharegpt conversation: chatml - path: arcee-ai/math_code_5k_claude type: sharegpt conversation: chatml split: validation - path: Undi95/Capybara-ShareGPT type: sharegpt conversation: chatml dataset_prepared_path: val_set_size: 0.0 sequence_len: 8192 sample_packing: true lora_fan_in_fan_out: wandb_project: qwen2.5-3b-gelato wandb_entity: wandb_watch: wandb_name: wandb_log_model: output_dir: ./outputs/gelato-3b gradient_accumulation_steps: 8 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit torchdistx_path: lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true gptq_groupsize: s2_attention: gptq_model_v1: warmup_steps: 50 evals_per_epoch: saves_per_epoch: 1 debug: deepspeed: deepspeed_configs/zero3_bf16_cpuoffload_params.json weight_decay: 0.1 fsdp: fsdp_config: special_tokens: eos_token: "<|im_end|>" bos_token: "<|im_start|>" ```

# outputs/gelato-3b This model is a fine-tuned version of [Qwen/Qwen2.5-3B](https://huggingface.co/Qwen/Qwen2.5-3B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.45.1 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.20.0