--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: wav2vec2-large-mms-1b-kyrgyz-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: ky split: test args: ky metrics: - name: Wer type: wer value: 0.23120079630802642 --- # wav2vec2-large-mms-1b-kyrgyz-colab This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2384 - Wer: 0.2312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 4.9324 | 0.2347 | 100 | 0.3080 | 0.2811 | | 0.4397 | 0.4695 | 200 | 0.2887 | 0.2666 | | 0.4336 | 0.7042 | 300 | 0.2816 | 0.2581 | | 0.4064 | 0.9390 | 400 | 0.2602 | 0.2518 | | 0.3604 | 1.1737 | 500 | 0.2447 | 0.2433 | | 0.3752 | 1.4085 | 600 | 0.2603 | 0.2457 | | 0.3801 | 1.6432 | 700 | 0.2531 | 0.2433 | | 0.4021 | 1.8779 | 800 | 0.2418 | 0.2441 | | 0.3807 | 2.1127 | 900 | 0.2625 | 0.2431 | | 0.3764 | 2.3474 | 1000 | 0.2421 | 0.2410 | | 0.3669 | 2.5822 | 1100 | 0.2423 | 0.2422 | | 0.3529 | 2.8169 | 1200 | 0.2447 | 0.2337 | | 0.3432 | 3.0516 | 1300 | 0.2351 | 0.2345 | | 0.3535 | 3.2864 | 1400 | 0.2469 | 0.2331 | | 0.3481 | 3.5211 | 1500 | 0.2353 | 0.2355 | | 0.3301 | 3.7559 | 1600 | 0.2414 | 0.2309 | | 0.3696 | 3.9906 | 1700 | 0.2384 | 0.2312 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0