---
language:
- en
- de
- es
- fr
- it
license: apache-2.0
library_name: transformers
tags:
- dpo
- rlaif
- preference
- ultrafeedback
- moe
datasets:
- argilla/ultrafeedback-binarized-preferences-cleaned
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
pipeline_tag: text-generation
model-index:
- name: notux-8x7b-v1
results: []
---
# Model Card for Notux 8x7B-v1
This model is a preference-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) on the [argilla/ultrafeedback-binarized-preferences-cleaned](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned) dataset using DPO (Direct Preference Optimization).
As of Dec 26th 2023, it outperforms `Mixtral-8x7B-Instruct-v0.1` and is the top ranked MoE (Mixture of Experts) model on the [Hugging Face Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
This is part of the Notus family of models and experiments, where the Argilla team investigates data-first and preference tuning methods like dDPO (distilled DPO). This model is the result of our first experiment at tuning a MoE model that has already been fine-tuned with DPO (i.e., Mixtral-8x7B-Instruct-v0.1).
## Model Details
### Model Description
- **Developed by:** Argilla (based on MistralAI previous efforts)
- **Shared by:** Argilla
- **Model type:** Pretrained generative Sparse Mixture of Experts
- **Language(s) (NLP):** English, Spanish, Italian, German, and French
- **License:** MIT
- **Finetuned from model:** [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
### Model Sources
- **Repository:** https://github.com/argilla-io/notus
- **Paper:** N/A
## Training Details
### Training Hardware
We used a VM with 8 x H100 80GB hosted in runpod.io for 1 epoch (~10hr).
### Training Data
We used a new iteration of the Argilla UltraFeedback preferences dataset named [argilla/ultrafeedback-binarized-preferences-cleaned](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned).
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.4384 | 0.22 | 200 | 0.4556 | -0.3275 | -1.9448 | 0.7937 | 1.6174 | -405.7994 | -397.8617 | -1.3157 | -1.4511 |
| 0.4064 | 0.43 | 400 | 0.4286 | -0.2163 | -2.2090 | 0.8254 | 1.9927 | -408.4409 | -396.7496 | -0.7660 | -0.6539 |
| 0.3952 | 0.65 | 600 | 0.4275 | -0.1311 | -2.1603 | 0.8016 | 2.0291 | -407.9537 | -395.8982 | -0.6783 | -0.7206 |
| 0.3909 | 0.87 | 800 | 0.4167 | -0.2273 | -2.3146 | 0.8135 | 2.0872 | -409.4968 | -396.8602 | -0.8458 | -0.7738 |
### Framework versions
- Transformers 4.36.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.15.0
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_argilla__notus-8x7b-experiment)
| Metric |Value|
|---------------------------------|----:|
|Avg. |73.18|
|AI2 Reasoning Challenge (25-Shot)|70.99|
|HellaSwag (10-Shot) |87.73|
|MMLU (5-Shot) |71.33|
|TruthfulQA (0-shot) |65.79|
|Winogrande (5-shot) |81.61|
|GSM8k (5-shot) |61.64|