--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_keras_callback model-index: - name: arieg/bw_spec_cls_4_01_s_200 results: [] --- # arieg/bw_spec_cls_4_01_s_200 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0157 - Train Sparse Categorical Accuracy: 1.0 - Validation Loss: 0.0151 - Validation Sparse Categorical Accuracy: 1.0 - Epoch: 19 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'clipnorm': 1.0, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 14400, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch | |:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:| | 0.7760 | 0.8944 | 0.3046 | 1.0 | 0 | | 0.2006 | 1.0 | 0.1346 | 1.0 | 1 | | 0.1136 | 1.0 | 0.0957 | 1.0 | 2 | | 0.0865 | 1.0 | 0.0768 | 1.0 | 3 | | 0.0712 | 1.0 | 0.0652 | 1.0 | 4 | | 0.0611 | 1.0 | 0.0565 | 1.0 | 5 | | 0.0532 | 1.0 | 0.0498 | 1.0 | 6 | | 0.0471 | 1.0 | 0.0441 | 1.0 | 7 | | 0.0420 | 1.0 | 0.0395 | 1.0 | 8 | | 0.0376 | 1.0 | 0.0355 | 1.0 | 9 | | 0.0339 | 1.0 | 0.0321 | 1.0 | 10 | | 0.0307 | 1.0 | 0.0291 | 1.0 | 11 | | 0.0279 | 1.0 | 0.0266 | 1.0 | 12 | | 0.0255 | 1.0 | 0.0243 | 1.0 | 13 | | 0.0233 | 1.0 | 0.0223 | 1.0 | 14 | | 0.0214 | 1.0 | 0.0205 | 1.0 | 15 | | 0.0198 | 1.0 | 0.0190 | 1.0 | 16 | | 0.0183 | 1.0 | 0.0175 | 1.0 | 17 | | 0.0169 | 1.0 | 0.0163 | 1.0 | 18 | | 0.0157 | 1.0 | 0.0151 | 1.0 | 19 | ### Framework versions - Transformers 4.35.0 - TensorFlow 2.14.0 - Datasets 2.14.6 - Tokenizers 0.14.1