--- license: apache-2.0 tags: - generated_from_trainer datasets: - fashion_mnist_quality_drift metrics: - accuracy - f1 model-index: - name: resnet-50-fashion-mnist-quality-drift results: - task: name: Image Classification type: image-classification dataset: name: fashion_mnist_quality_drift type: fashion_mnist_quality_drift config: default split: training args: default metrics: - name: Accuracy type: accuracy value: 0.73 - name: F1 type: f1 value: 0.7289360255705818 --- # resnet-50-fashion-mnist-quality-drift This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the fashion_mnist_quality_drift dataset. It achieves the following results on the evaluation set: - Loss: 0.7473 - Accuracy: 0.73 - F1: 0.7289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.5138 | 1.0 | 750 | 0.9237 | 0.684 | 0.6826 | | 0.9377 | 2.0 | 1500 | 0.7861 | 0.722 | 0.7253 | | 0.8276 | 3.0 | 2250 | 0.7473 | 0.73 | 0.7289 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1