--- language: - hi license: apache-2.0 base_model: arun100/whisper-base-hi-3 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 metrics: - wer model-index: - name: Whisper Base Hindi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_16_0 hi type: mozilla-foundation/common_voice_16_0 config: hi split: test args: hi metrics: - name: Wer type: wer value: 27.6637932833796 --- # Whisper Base Hindi This model is a fine-tuned version of [arun100/whisper-base-hi-3](https://huggingface.co/arun100/whisper-base-hi-3) on the mozilla-foundation/common_voice_16_0 hi dataset. It achieves the following results on the evaluation set: - Loss: 0.4681 - Wer: 27.6638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1251 | 13.16 | 1000 | 0.4681 | 27.6638 | | 0.0812 | 26.32 | 2000 | 0.5046 | 28.2065 | | 0.0584 | 39.47 | 3000 | 0.5393 | 28.3046 | | 0.0441 | 52.63 | 4000 | 0.5639 | 28.4924 | | 0.0392 | 65.79 | 5000 | 0.5734 | 28.5863 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0