--- license: apache-2.0 base_model: arun100/whisper-base-th-1 tags: - whisper-event - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Base Thai (2) results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs th_th type: google/fleurs config: th_th split: test args: th_th metrics: - name: Wer type: wer value: 53.662828506943114 --- # Whisper Base Thai (2) This model is a fine-tuned version of [arun100/whisper-base-th-1](https://huggingface.co/arun100/whisper-base-th-1) on the google/fleurs th_th dataset. It achieves the following results on the evaluation set: - Loss: 0.5628 - Wer: 53.6628 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5011 | 35.0 | 500 | 0.5963 | 59.8868 | | 0.3648 | 71.0 | 1000 | 0.5613 | 55.9542 | | 0.2732 | 107.0 | 1500 | 0.5504 | 54.4585 | | 0.2081 | 142.0 | 2000 | 0.5502 | 53.6705 | | 0.1627 | 178.0 | 2500 | 0.5558 | 53.8273 | | 0.133 | 214.0 | 3000 | 0.5628 | 53.6628 | | 0.1112 | 249.0 | 3500 | 0.5696 | 54.0798 | | 0.0973 | 285.0 | 4000 | 0.5749 | 53.9995 | | 0.0906 | 321.0 | 4500 | 0.5783 | 54.1487 | | 0.0874 | 357.0 | 5000 | 0.5793 | 54.2290 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0