--- license: mit base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 tags: - generated_from_trainer metrics: - accuracy model-index: - name: mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 results: [] datasets: - asadfgglie/BanBan_2024-10-17-facial_expressions-nli language: - zh pipeline_tag: zero-shot-classification --- # mDeBERTa-v3-base-xnli-multilingual-zeroshot-v3.0-only-non-nli This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2718 - F1 Macro: 0.9088 - F1 Micro: 0.9089 - Accuracy Balanced: 0.9089 - Accuracy: 0.9089 - Precision Macro: 0.9092 - Recall Macro: 0.9089 - Precision Micro: 0.9089 - Recall Micro: 0.9089 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 128 - seed: 20241201 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:| | 0.2798 | 1.69 | 200 | 0.3328 | 0.8677 | 0.8677 | 0.8681 | 0.8677 | 0.8678 | 0.8681 | 0.8677 | 0.8677 | ### Eval results |Datasets|asadfgglie/nli-zh-tw-all/test|asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test|eval_dataset|test_dataset| | :---: | :---: | :---: | :---: | :---: | |eval_loss|0.667|0.294|0.381|0.272| |eval_f1_macro|0.711|0.901|0.868|0.909| |eval_f1_micro|0.713|0.901|0.868|0.909| |eval_accuracy_balanced|0.71|0.901|0.867|0.909| |eval_accuracy|0.713|0.901|0.868|0.909| |eval_precision_macro|0.711|0.901|0.868|0.909| |eval_recall_macro|0.71|0.901|0.867|0.909| |eval_precision_micro|0.713|0.901|0.868|0.909| |eval_recall_micro|0.713|0.901|0.868|0.909| |eval_runtime|568.387|4.571|0.829|3.382| |eval_samples_per_second|14.955|206.945|227.909|223.805| |eval_steps_per_second|0.118|1.75|2.412|1.774| |epoch|2.99|2.99|2.99|2.99| |Size of dataset|8500|946|189|757| ### Framework versions - Transformers 4.33.3 - Pytorch 2.5.1+cu121 - Datasets 2.14.7 - Tokenizers 0.13.3