--- library_name: transformers license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper_large_v3_turbo_v2 results: [] --- # Whisper_large_v3_turbo_v2 This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6363 - Wer: 31.7384 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.8106 | 1.1834 | 500 | 1.0268 | 93.4686 | | 0.5518 | 2.3669 | 1000 | 0.8523 | 56.8544 | | 0.4203 | 3.5503 | 1500 | 0.7787 | 52.2696 | | 0.2934 | 4.7337 | 2000 | 0.7357 | 48.8402 | | 0.2243 | 5.9172 | 2500 | 0.7544 | 49.3678 | | 0.1262 | 7.1006 | 3000 | 0.7770 | 49.9682 | | 0.1038 | 8.2840 | 3500 | 0.7445 | 43.7824 | | 0.0791 | 9.4675 | 4000 | 0.7615 | 44.6193 | | 0.057 | 10.6509 | 4500 | 0.7432 | 41.0079 | | 0.0441 | 11.8343 | 5000 | 0.7307 | 40.3166 | | 0.0313 | 13.0178 | 5500 | 0.7222 | 38.7519 | | 0.0147 | 14.2012 | 6000 | 0.7173 | 37.2965 | | 0.0091 | 15.3846 | 6500 | 0.6866 | 34.8949 | | 0.0022 | 16.5680 | 7000 | 0.6540 | 33.5031 | | 0.0025 | 17.7515 | 7500 | 0.6488 | 32.5298 | | 0.0004 | 18.9349 | 8000 | 0.6363 | 31.7384 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3